lunes, 28 de febrero de 2011

ACTIVIDAD EVIDENCIAL

1. Describa brevemente las fases del ciclo celular.

2. La duración de una vuelta completa del ciclo celular varía, con dependencia de ciertos factores. Mencione al menos tres.

3. ¿Por qué es tan importante la llamada fase S?

4. ¿El ciclo celular puede detenerse temporariamente en alguna etapa?

5. ¿Existe algún mecanismo celular que evite la proliferación de células cancerosas? Si su respuesta es afirmativa, descríbalo brevemente.

6. ¿Qué son los "puntos de control" que se verifican durante el ciclo celular y con qué se relacionan?

7. ¿Cómo se denomina cada una de las copias de DNA que forman el cromosoma una vez iniciada la mitosis, cómo están unidas y en qué sitio?

8. ¿Cómo y cuándo se forma el huso mitótico?

9. ¿En cuántas fases se divide la mitosis y cómo se denominan?

10. ¿En qué se diferencia la apoptosis de la necrosis y cómo afecta a un organismo pluricelular?

11. La fecundación y la meiosis se consideran fuentes de variabilidad génica. ¿Por qué?

Mitosis y Meiosis

La distribución de la información genética

1. La división celular permite la reproducción de los organismos unicelulares y pluricelulares. En estos últimos posibilita, además, el desarrollo de un individuo a partir de una única célula y la reparación de los tejidos dañados.

2. En los procariontes y los eucariontes, los cromosomas se duplican antes de la división celular. Luego se distribuyen entre las células hijas de tal manera que se produce una distribución equitativa del material hereditario. En los eucariontes existen dos tipos de división celular: la mitosis y la meiosis.
La vida de una célula: el ciclo celular

3. El ciclo celular es la sucesión de fases de crecimiento y división que ocurren en la vida de una célula. En él se pueden reconocer tres fases: interfase, mitosis y citocinesis.

El ciclo celular

La división celular, constituida por la mitosis (cariocinesis o división del núcleo) y la citocinesis (división del citoplasma), ocurre después de completarse las tres fases preparatorias de la interfase: fases G1, S y G2.

4. La interfase abarca tres etapas: G1, S y G2. Durante G1, la célula crece y se duplican las organelas; en las células animales, los centríolos empiezan a duplicarse. En la etapa S se duplican el DNA y sus proteínas asociadas. En G2 comienzan a ensamblarse las estructuras relacionadas con la división celular, los cromosomas se condensan y los centríolos terminan de duplicarse.

5. El ciclo celular está regulado por estímulos externos e internos. La falta de nutrientes, los cambios de temperatura y de pH, y la presencia de células contiguas pueden detener la división celular, mientras que ciertas hormonas y factores de crecimiento la estimulan. La regulación interna es realizada mediante la fosforilación y la degradación de complejos proteicos llamados Cdk-ciclinas, formados por una subunidad reguladora (la ciclina) y otra catalítica (la cinasa). La actividad de estos complejos determina si el ciclo celular avanza o se detiene.
La división del núcleo y del citoplasma: mitosis y citocinesis

6. La mitosis es un proceso continuo, en el que se reconocen cuatro fases: profase, metafase, anafase y telofase.

7. Al comienzo de la mitosis, cada cromosoma está formado por dos cromátidas hermanas y se encuentra totalmente condensado. El huso mitótico está armado y las fibras cinetocóricas están unidas a los centrómeros de los cromosomas. Las fibras del huso separan las cromátidas hermanas, que son conducidas a polos opuestos de la célula. Así se asegura la distribución equitativa de la información genética entre las dos células hijas.

8. La citocinesis divide a la célula madre en dos hijas casi iguales. Cada una de ellas recibe un juego completo de cromosomas y alrededor de la mitad del citoplasma, las organelas y las macromoléculas de la célula madre.

Mitosis en una célula vegetal con cuatro cromosomas

El huso se forma aunque no haya centríolos presentes ni ásteres visibles. El plano de la división celular se establece en la fase G2 tardía del ciclo celular, cuando los microtúbulos del citoesqueleto se reorganizan en una estructura circular, la banda de preprofase, justo por dentro de la pared celular. Aunque esta banda desaparece al comenzar la profase, determina la ubicación futura del ecuador y de la placa celular. Los microtúbulos de la banda se reensamblan luego en el huso, en una zona clara que se origina alrededor del núcleo en el curso de la profase. En la citocinesis, que comienza durante la telofase, la placa celular se extiende en forma gradual hacia afuera hasta que alcanza la región exacta de la pared celular ocupada previamente por la banda de preprofase. Las vesículas que originan la placa celular son guiadas a su posición por las fibras del huso que quedan entre los núcleos hijos.
Senescencia: el envejecimiento de una célula

9. El número de divisiones de las células eucariontes en cultivo disminuye con el tiempo y está correlacionado con el acortamiento progresivo de los telómeros. Finalmente, las células entran en un estado de senescencia, que se caracteriza por la ausencia de división celular.

El proceso de muerte celular: apoptosis versus necrosis

10. La apoptosis es un proceso de muerte celular programada genéticamente. En los vertebrados, controla el número de neuronas durante el desarrollo del sistema nervioso, elimina células defectuosas y da forma a los órganos en desarrollo. Junto con la mitosis, modela las formas de los organismos.

11. Las caspasas son enzimas que degradan las proteínas de la lámina nuclear y del citoesqueleto, y provocan la apoptosis. Su actividad está controlada por otras proteínas que, a su vez, responden a factores extracelulares.

12. La necrosis es un tipo de muerte celular no controlada. Suele producir la hinchazón y el estallido de las células.
La división celular: un modo de reproducción de un organismo

13. En los organismos unicelulares, la división celular está asociada con la reproducción y permite la aparición de dos réplicas exactas de cada individuo.
Hacia la reproducción sexual

14. La reproducción sexual ocurre en la mayoría de los eucariontes. Requiere dos progenitores y siempre involucra dos procesos: la meiosis y la fecundación.
Células haploides, diploides y poliploides: distinto número de dotaciones cromosómicas

15. El número de cromosomas se mantiene constante entre los individuos de una misma especie.

16. Las células somáticas de la mayoría de las plantas y animales son diploides (tienen una dotación doble de cromosomas), mientras que sus gametos son haploides (tienen una dotación simple). Las células poliploides tienen más de dos dotaciones cromosómicas. El número haploide de cromosomas se designa n y el número diploide, 2n.

17. En toda célula diploide, cada cromosoma tiene su par homólogo. Uno de los cromosomas homólogos proviene del gameto de uno de los progenitores y su par, del gameto del otro progenitor.
La meiosis: una reducción en el número de cromosomas

18. La meiosis consiste en dos divisiones sucesivas que producen cuatro células hijas haploides. De esta forma se compensa el efecto multiplicador de la fecundación.

Separación y reunión de los cromosomas homólogos

Durante la meiosis, los miembros de cada par de cromosomas homólogos se separan y cada gameto haploide (n), producido a partir de una célula diploide (2n), lleva sólo un miembro de cada par. En la fecundación, los núcleos del espermatozoide y del óvulo se unen en el cigoto, cuyo núcleo contiene, nuevamente, los cromosomas homólogos de a pares. Cada par está formado por un cromosoma homólogo proveniente de un progenitor y el otro homólogo proveniente del otro progenitor. En los diagramas usamos los colores rojo y verde para diferenciar los cromosomas paternos de los maternos

19. En cada una de las dos divisiones meióticas se pueden reconocer las mismas fases que en la mitosis.

20. Al comienzo de la meiosis I, los cromosomas homólogos se aparean y se produce el entrecruzamiento: un fragmento de cromátida de un homólogo se intercambia con un fragmento de cromátida del otro. Durante la meiosis II, las cromátidas de cada homólogo se distribuyen al azar entre las células hijas.
La mitosis y la meiosis: procesos similares pero diferentes

21. En la meiosis, cada núcleo diploide se divide dos veces, pero los cromosomas se duplican una sola. En la mitosis, en cambio, cada división es precedida por una duplicación cromosómica.

22. Durante la meiosis, los cromosomas homólogos se aparean, se entrecruzan y se segregan al azar. Nada de esto ocurre durante la mitosis.

23. La mitosis ocurre en células haploides y diploides; la meiosis, sólo en diploides.

La meiosis en organismos con distintos ciclos vitales

24. En muchos organismos unicelulares y hongos haploides, la meiosis ocurre inmediatamente después de la fusión de las células fecundantes.

25. En las plantas que se reproducen en forma sexual se alternan una fase haploide que por mitosis produce gametos y una fase diploide que por meiosis produce esporas.

26. En los animales diploides, la meiosis produce gametos haploides.
Posibles errores en la meiosis

27. Los cromosomas homólogos o sus cromátidas se pueden separar en forma incorrecta y dar lugar a la aparición de gametos con cromosomas faltantes o sobrantes.
Las consecuencias de la reproducción sexual

28. En las especies con reproducción sexual ocurren tres procesos que actúan como fuentes de variabilidad genética: el entrecruzamiento, la segregación al azar de los cromosomas de los progenitores y la fecundación. Esta variabilidad es un aspecto clave en el proceso evolutivo de los seres vivos.

domingo, 13 de febrero de 2011

Actividades de Genética

RESPONDER EL SIGUIENTE CUESTIONAMIENTO

1. ¿Quién era Gregor Mendel y dónde realizó sus investigaciones?

2. ¿Qué observó Mendel en la primera generación, al cruzar dos variantes de una misma característica?

3. ¿Qué características tienen las variedades, a las que Mendel llamó variantes dominantes?

4. ¿En qué consiste el "principio de segregación"?

5. ¿Qué diferencia existe entre genotipo y fenotipo?

6. ¿Qué propone la denominada "segunda ley de Mendel"?

7. Hugo de Vries, a comienzos del siglo XX, descubrió un posible origen de las variantes alélicas. ¿En qué consistía?

8. ¿La "segunda ley de Mendel" tiene validez para cualquier par de genes?

9. ¿Cuál es la relación entre los siguientes conceptos: genes, locus, alelos, cromosomas homólogos?

10. Compare los conceptos de penetrancia y expresividad.

Principios de Genética

Las contribuciones de Mendel

1. A mediados del siglo XIX, Gregor Mendel realizó cruzamientos experimentales con variedades de Pisum sativum (arveja común). Usó formas puras que poseían características claramente diferentes y no cambiaban de una generación a otra.

2. Al cruzar dos variantes de una misma característica, Mendel observó que en la primera generación (F1) todos los individuos presentaban sólo una de las variantes, a la que Mendel llamó variante dominante. En la siguiente generación (F2), obtenida por autopolinización de la F1, reaparecía la variante ausente en la primera generación y Mendel la llamó variante recesiva. En la F2, la proporción entre variante dominante y variante recesiva era aproximadamente 3:1.

3. Según la "primera ley de Mendel", o principio de segregación, cada individuo lleva un par de factores hereditarios para cada característica. Los miembros del par segregan durante la formación de los gametos. Los factores hereditarios de Mendel coinciden con el actual concepto de gen.

El principio de segregación

A partir de un cruzamiento entre plantas de la generación P, una planta de guisante homocigótica para el alelo dominante (BB) y la otra homocigótica para el alelo recesivo (bb), se obtienen las generaciones F1 y F2. El fenotipo de la progenie -la generación F1- es púrpura, pero su genotipo es Bb. La F1 heterocigótica produce cuatro tipos de gametos: masculinos B, femeninos B, masculinos b y femeninos b, en proporciones iguales. Cuando esta planta se autopoliniza, los gametos masculinos y los femeninos, B y b, se combinan al azar y forman, en promedio 1/4 BB (púrpura), 2/4 (o 1/2) Bb (púrpura) y 1/4 bb (blanco), lo que significa una relación genotípica de 1:2:1. Esta relación genotípica da cuenta de la relación fenotípica: tres dominantes (púrpura) a un recesivo (blanco), que se expresa como 3:1.

4. Los alelos son variantes de un mismo gen presentes en una población. Los dominantes se representan con letras mayúsculas y los recesivos con minúsculas.

5. Los individuos diploides que tienen dos alelos iguales de un gen determinado son homocigóticos para ese gen; los individuos cuyos alelos son distintos son heterocigóticos para el gen en cuestión. Los alelos dominantes se expresan en la condición homocigota y en la heterocigota, mientras que los alelos recesivos lo hacen sólo en la homocigota.

6. El genotipo es la constitución genética de un individuo. El fenotipo, resultado de la interacción entre el genotipo y el ambiente, es su apariencia externa.

7. Al analizar simultáneamente la herencia de dos características, Mendel observó que la F1 era homogénea, y que en la F2 aparecían los cuatro fenotipos posibles en una proporción 9:3:3:1 (doble dominante:dominante/recesivo:recesivo/dominante:doble recesivo).

8. La "segunda ley de Mendel", o principio de distribución independiente, establece que durante la formación de los gametos, cada par de alelos segrega independientemente de los otros pares.

El principio de la distribución independiente

Una planta homocigótica para semillas redondas (RR) y amarillas (AA) se cruza con una planta de semillas rugosas (rr) y verdes (aa). Toda la generación Fl tiene semillas redondas y amarillas (RrAa). En la F2, de las 16 combinaciones posibles en la progenie, 9 muestran las dos variantes dominantes (RA, redonda y amarilla), 3 muestran una combinación de dominante y recesivo (Ra, redonda y verde), 3 muestran la otra combinación (rA, rugosa y amarilla) y 1 muestra las dos recesivas (ra, rugosa y verde). Esta distribución 9:3:3:1 de fenotipos es el resultado esperado de un cruzamiento en el que intervienen dos características que se distribuyen independientemente, cada una con un alelo dominante y uno recesivo en cada uno de los progenitores.

Sobre genes y cromosomas

9. Sutton supuso que los elemente descritos por Mendel -que hoy conocemos como genes- están en los cromosomas y que los alelos -las formas alternativas de un gen- se encuentran en cromosomas homólogos. Cuando se separan los cromosomas homólogos durante la meiosis I, también se separan los alelos de cada gen y cuando los gametos se fusionan durante la fecundación, se forman nuevas combinaciones de alelos.

Distribución de los cromosomas en un cruzamiento mendeliano según la hipótesis de Sutton.

Aunque el guisante tiene 14 cromosomas (n = 7), aquí se muestran solamente cuatro, los dos que llevan los alelos determinantes de la textura redonda o rugosa y los dos que llevan los alelos determinantes del color amarillo o verde. En este caso, un progenitor es homocigoto recesivo y el otro, homocigoto dominante, por lo que los únicos gametos que pueden producir son RA y ra (R indica ahora no sólo el alelo, sino el cromosoma que lleva el alelo, y lo mismo ocurre con los otros símbolos). La generación Fl será entonces Rr y Aa. Cuando una célula de esta generación entra en meiosis, al separarse los cromosomas homólogos en la anafase I, R se separa de r y A se separa de a, y se distribuyen en forma independiente. Entonces, se obtienen cuatro tipos diferentes de gametos femeninos y cuatro masculinos que se pueden combinar en 16 (4 x 4) modos diferentes.

10. A comienzos del siglo XX, Hugo de Vries descubrió que las variantes alélicas se originaban a partir de cambios repentinos en el material hereditario. A esos cambios los llamó mutaciones.

11. Los genes que se encuentran en el cromosoma X corresponden a características ligadas al sexo. En las especies animales cuyos machos tienen un sistema de cromosomas sexuales XY, las proporciones fenotípicas de las características ligadas al sexo en la F2 no cumplen la primera "ley de Mendel".

12. La segunda "ley de Mendel" tiene validez para genes que se encuentran en distintos cromosomas o lo suficientemente alejados unos de otros. El entrecruzamiento entre cromosomas homólogos permite que los genes se separen y se recombinen. Los genes ligados son aquellos que, por encontrarse próximos, tienden a segregar juntos.

13. El lugar que ocupan los genes en los cromosomas se denomina locus. Los alelos de un mismo gen ocupan el mismo locus en los cromosomas homólogos.

14. Los genes están dispuestos linealmente en los cromosomas. Cuanto menor es la distancia entre ellos, menor es el porcentaje de recombinación. La frecuencia de recombinación permite conocer el orden y la distancia de los genes en los cromosomas.

Entrecruzamiento

La posibilidad de recombinación en cualquier punto entre B y D es mayor que entre B y C, simplemente porque la distancia entre B y D es mayor y, en consecuencia, hay más lugar (y por tanto mayor probabilidad) para que ocurra el entrecruzamiento.

Ampliando el concepto de gen

15. En el fenómeno de dominancia incompleta, el cruzamiento de dos organismos homocigotos (uno dominante y el otro recesivo) origina una F1 homogénea, pero con un fenotipo intermedio al de ambos progenitores. En el caso de la codominancia, los individuos heterocigotos de la F1 expresan en forma simultánea los dos fenotipos de los progenitores.

Dominancia incompleta

Un cruzamiento entre una planta Antirrhinum con flores rojas (R1R1) y una con flores blancas (R2R2). Este cruzamiento se parece mucho al realizado entre una planta de guisante de flores púrpura y otra de flores blancas que se muestra en la figura 8-6, pero hay una diferencia significativa. En este caso, ningún alelo es dominante. La flor del heterocigoto presenta un fenotipo intermedio entre los dos colores.

16. Se denomina alelos múltiples a la existencia en la población de más de dos variantes alélicas de un mismo gen. Tales variantes presentan entre sí diferentes relaciones de dominancia.

17. Además de las interacciones entre los alelos de un mismo gen, existen interacciones entre los alelos de genes diferentes. Como resultado de estas interacciones, en las características determinadas por más de un gen aparecen diferentes fenotipos.

18. La epistasis consiste en el enmascaramiento del efecto de un gen por parte de otro gen. Cuando ocurre esto, las proporciones mendelianas no se cumplen.

Epistasis en arvejillas de olor

Bateson y sus colegas encontraron un ejemplo claro de interacción génica epistática en la arvejilla de olor Lathyrus odoratus. Cuando cruzaron dos variedades puras obtenidas en forma independiente, ambas de flores blancas, encontraron que toda la progenie de F1 se autopolinizaran, de 651 plantas que florecieron en la generación F2, 382 tenían flores púrpura y 269, flores blancas. Si examinamos cuidadosamente estas proporciones, se verá que se ajustan a una relación 9:7. ¿Cómo podemos explicar este resultado? Recordemos que en un cruzamiento en el que se analizan dos genes cuyos alelos se distribuyen independientemente se espera que la relación fenotípica sea 9:3:3:1. La explicación en este caso es que dos genes diferentes tienen efecto sobre el color de las flores. Se representan los alelos de estos genes como C, c, P y p. La proporción fenotípica 9/16 de F2 muestra los efectos de los dos alelos dominantes (C y P). La proporción 7/16 reúne al resto de la progenie. Sólo una planta que haya recibido los alelos dominantes de ambos genes (o sea, el alelo P y el alelo C) es capaz de producir pigmento púrpura. En este caso, cualquier gen en la condición homocigoto recesivo es epistático u oculta el efecto del otro gen. Cuando el gen C es homocigoto recesivo (cc), las flores son blancas aunque esté presente un alelo P dominante (como en los fenotipos ccPp y ccPP). De modo semejante, cuando el gen P es homocigoto recesivo (pp), las flores también son blancas (como en los fenotipos Ccpp y CCpp).

19. La pleiotropía es el caso en que un gen afecta a más de una característica.

20. La herencia poligénica es aquella en la que el fenotipo es el resultado de la acción acumulativa de los efectos combinados de muchos genes. Estas características presentan una variación continua.

21. La expresividad se refiere a la variación o proporcionalidad en la expresión de un genotipo; la penetrancia, a fenotipos cuya frecuencia no coincide con la esperada. Los términos expresividad y penetrancia se utilizan para referirse a casos en los que el fenotipo asociado a un gen depende de factores ambientales o desconocidos.

Alteraciones cromosómicas

22. Los cromosomas pueden sufrir cambios que afectan su número (alteraciones numéricas) o su estructura (alteraciones estructurales). Estos cambios pueden alterar la viabilidad o la fertilidad de un organismo, o mantenerse como parte de la variabilidad genética de la población. Se consideran mutaciones y ocurren durante la mitosis o la meiosis.