martes, 19 de octubre de 2010

ACTIVIDAD EVIDENCIAL: FOTOSINTESIS

1. Existen dos modelos básicos para describir la naturaleza de la luz: a) el fotónico y b) el ondulatorio. ¿Puede considerarse que sólo uno es el correcto? Justifique su respuesta.

2. ¿Cuántos fotosistemas tienen los organismos fotosintéticos, cómo están formados y cómo se diferencian entre sí?

3. ¿Cómo se denomina la fijación de CO2, cómo ocurre y por dónde penetra ese gas en la planta?

4. ¿Qué muestra eL CLOROPLASTO y qué relación tiene con la fotosíntesis? Descríbala en menos de diez renglones.

5. ¿Qué es la fotosíntesis CAM, en qué plantas ocurre y cómo funciona?

6. ¿Cuál es la utilidad de la glucosa formada en la fotosíntesis?

7. ¿Qué representa este esquema "Las plantas C4: la vía de los cuatro carbonos"?

8. ¿Cuál es la relación entre los procesos de fotosíntesis y respiración? Compárelos en menos de diez renglones.

9. ¿Qué significado tiene esta ecuación?: CO2 + 2H2A + luz → (CH2O) + H2O + A2

FOTOSINTESIS

Visión general de la fotosíntesis: sus etapas

1. Los organismos fotosintéticos productores de O2 usan energía lumínica, CO2 y agua para producir la materia orgánica necesaria para su alimentación. El O2 que liberan se forma con átomos provenientes del agua.

2. La fotosíntesis se realiza en dos etapas: la lumínica, en la que se utiliza la energía de la luz para sintetizar ATP y NADPH, y la fijadora de carbono, que utiliza los productos de la primera etapa para la producción de azúcares.

Esquema global de la fotosíntesis

La fotosíntesis ocurre en dos etapas: las reacciones dependientes de la luz y las reacciones que fijan carbono. (a) En las reacciones dependientes de la luz, la absorción de la energía lumínica por las moléculas de clorofila a en la membrana del tilacoide inicia un transporte de electrones y la formación de un gradiente de protones a partir del cual se produce ATP. Durante este proceso, la molécula de agua se escinde y se liberan moléculas de oxígeno gaseoso. Los electrones son finalmente absorbidos por el NADP+ y se forma NADPH. (b) En las reacciones que fijan carbono, que ocurren en la estroma del cloroplasto, se sintetizan glúcidos a partir del CO2 y el hidrógeno que transporta el NADPH. Este proceso utiliza la energía del ATP y el NADPH producidos en la etapa dependiente de la luz y, como veremos más adelante, implica una serie de reacciones que constituyen el ciclo de Calvin.
La fotosíntesis se realiza en los cloroplastos: los tilacoides

3. En los eucariontes, la fotosíntesis se realiza en los cloroplastos, organelas que poseen una membrana externa y otra interna. La membrana interna rodea una solución densa, la estroma, donde se encuentran las membranas tilacoides, que tienen forma de sacos aplanados dispuestos en forma apilada. Las reacciones de la etapa lumínica ocurren en los sacos tilacoides y las que fijan el carbono, en la estroma.

4. Los sacos tilacoides de los procariontes fotosintéticos pueden formar parte de la membrana celular, estar aislados en el citoplasma o constituir una estructura compleja de la membrana interna.
La naturaleza de la luz

5. El modelo ondulatorio de la luz permite a los físicos describir matemáticamente ciertos aspectos de la luz y el modelo fotónico permite otro tipo de cálculos y predicciones matemáticas. Estos dos modelos ya no se consideran opuestos uno al otro, sino complementarios, en el sentido de que es necesaria una síntesis de ambos para una descripción completa del fenómeno que conocemos como luz.

6. Los sistemas vivos absorben la energía lumínica mediante el uso de pigmentos. Los organismos fotosintéticos tienen distintos tipos de pigmentos: la clorofila, que se encuentra en los sacos tilacoides, los carotenoides y las ficobilinas. Existen diferentes tipos de clorofila: la clorofila a, que colecta energía luminosa y está involucrada en la transformación de energía lumínica en química; la clorofila b, presente en las plantas y las algas verdes, y la clorofila c de las algas marrones.

7. La correspondencia entre el espectro de absorción de las clorofilas a y b y el espectro de absorción de la fotosíntesis indica una estrecha relación entre ésta y aquéllas (en ambos casos se observan dos picos, uno en la zona del rojo y otro en la del azul). Los carotenoides absorben en forma muy eficiente longitudes de onda que no son absorbidas por la clorofila.

El transporte de electrones: los fotosistemas y la ATP sintetasa

8. Los organismos fotosintéticos poseen dos fotosistemas, cada uno formado por una antena colectora de luz y un centro de reacción fotoquímico que incluye una molécula de clorofila a. Ambos fotosistemas se diferencian por el pico de absorción de la clorofila: el Fotosistema I lo presenta a 700 nm; el Fotosistema II, a 680 nm.

9. En un flujo no cíclico de electrones, los dos fotosistemas trabajan en forma simultánea y continua. Así se produce un flujo permanente de electrones desde el agua al Fotosistema II, de éste al Fotosistema I y de este último al NADP+.

10. Durante el transporte de electrones, los protones presentes en la estroma son enviados al espacio intertilacoide, creando un gradiente cuya energía se utiliza para sintetizar ATP. La síntesis de ATP a partir de energía lumínica se conoce como fotofosforilación.

11. Cuando los dos fotosistemas trabajan en forma independiente, se forma un flujo cíclico de electrones. En este caso no se forma NADPH, pero se sintetiza ATP. Es una ruta alternativa que permite regular la cantidad de NADPH y ATP formados en presencia de luz y, probablemente, aumenta la eficiencia en la formación de ATP cuando coexiste con el flujo no cíclico de electrones.

Los fotosistemas trabajan juntos

La energía lumínica atrapada en la molécula reactiva de la clorofila a del Fotosistema II lanza los electrones a un nivel de energía superior. Estos electrones son reemplazados en la molécula de clorofila a por electrones que provienen indirectamente de moléculas de agua que se escinden liberando además protones (H+) y gas oxígeno. Los electrones pasan desde el aceptor de electrones primario, a lo largo de una cadena de transporte de electrones, a un nivel de energía inferior, el centro de reacción del Fotosistema I. A medida que pasan a lo largo de esta cadena de transporte de electrones, se forma un gradiente de protones a partir del cual se sintetiza ATP. La energía lumínica absorbida por el Fotosistema I lanza los electrones a otro aceptor primario. Desde este aceptor, los electrones son transferidos mediante otros transportadores al NADP+ y se forma NADPH. Los electrones eliminados del Fotosistema I son reemplazados por los del Fotosistema II. El ATP y el NADPH representan la ganancia neta de las reacciones que capturan energía.

La fotofosforilación

Moléculas y complejos moleculares que participan de las reacciones directamente dependientes de la luz. Entre ellos, se distinguen los pigmentos, los transportadores de electrones, los Fotosistemas I y II y ciertas enzimas como las ATP sintetasas. La disposición particular de estas moléculas en la membrana tilacoide hace posible la síntesis quimiosmótica del ATP durante la fotofosforilación. En este proceso, los electrones de la molécula reactiva de clorofila a del Fotosistema II son impulsados a niveles energéticos superiores por la energía lumínica. A medida que descienden por una cadena de transportadores de electrones hacia la molécula reactiva de clorofila a del Fotosistema I, la energía que liberan se usa para bombear protones (H+) desde la estroma al espacio tilacoide. Esto crea un gradiente de protones. Cuando los protones se mueven a favor del gradiente a través del complejo de la ATP sintetasa, desde el espacio tilacoide a la estroma del cloroplasto, el ADP se fosforila a ATP.
Las reacciones que fijan carbono

12. El ATP y el NADPH formados durante el transporte de electrones se utilizan en la reducción del CO2 a glucosa. La incorporación de CO2 en compuestos orgánicos se conoce como fijación del carbono y ocurre en forma cíclica (ciclo de Calvin). En las plantas verdes, el CO2 llega a las células fotosintéticas a través de aberturas especializadas llamadas estomas.

13. El ciclo de Calvin comienza con la unión del CO2 a una molécula de cinco carbonos (ribulosa bifosfato) que luego se divide en dos moléculas de tres carbonos (fosfoglicerato). Cada seis vueltas del ciclo se introducen seis moléculas de CO2 y se producen dos moléculas de un azúcar de tres carbonos (gliceraldehído fosfato).

14. Las plantas poseen un mecanismo de control que evita que el ciclo de Calvin ocurra durante la noche. La luz lo estimula indirectamente y las reacciones de fijación de carbono son inhibidas en la oscuridad.

Resumen del ciclo de Calvin

En cada "vuelta" completa del ciclo ingresa una molécula de CO2. Aquí se resumen seis ciclos, el número requerido para elaborar dos moléculas de gliceraldehído fosfato, que equivalen a un azúcar de seis carbonos. Se combinan seis moléculas de ribulosa bifosfato (RuBP), un compuesto de cinco carbonos, con seis moléculas de CO2 y se producen seis moléculas de un intermediario inestable que pronto se escinde en doce moléculas de fosfoglicerato, un compuesto de tres carbonos. Estos últimos se reducen a doce moléculas de gliceraldehído fosfato. Diez de estas moléculas de tres carbonos se combinan y se regeneran para formar seis moléculas de cinco carbonos de RuBP. Las dos moléculas "extra" de gliceraldehído fosfato representan la ganancia neta del ciclo de Calvin. Estas moléculas son el punto de partida de numerosas reacciones que pueden implicar, por ejemplo, la síntesis de glúcidos, aminoácidos y ácidos grasos. La energía que impulsa al ciclo de Calvin proviene del ATP y el NADPH producidos por las reacciones de captura de energía en la primera etapa de la fotosíntesis.

15. La fotorrespiración ocurre cuando la concentración de CO2 en la hoja es baja en relación con la de O2. Consiste en la oxidación de la ribulosa bifosfato, con formación de CO2 y agua. Es un proceso que disminuye la eficiencia fotosintética de las plantas.

16. En las células del mesófilo de las plantas C4, el CO2 se une a un compuesto de tres carbonos (fosfoenolpiruvato), formando oxalacetato. Este último se convierte en malato y pasa a zonas más profundas de la hoja, donde libera CO2 que ingresa en el ciclo de Calvin. Este proceso, que involucra gasto de energía, representa una adaptación a las sequías y a intensidades lumínicas y temperaturas altas.

Vía para la fijación del carbono en las plantas C4

El CO2 se fija primero en las células del mesófilo como ácido oxalacético. La PEP carboxilasa, a diferencia de la RuBP carboxilasa, es incapaz de incorporar O2. Aun con concentraciones muy bajas de CO2 y en presencia de abundante O2, la enzima trabaja rápidamente uniendo el CO2 al PEP. Comparada con la RuBP carboxilasa, en presencia de O2 la PEP carboxilasa fija el CO2 más rápido y en concentraciones menores, manteniendo baja la concentración de CO2 dentro de las células cercanas a la superficie de la hoja. El ácido oxalacético se transforma en ácido málico que es transportado a las células de la vaina, donde libera CO2. El CO2 así formado entra en el ciclo de Calvin. El ácido málico se transforma en pirúvico que regresa a la célula del mesófilo, donde es fosforilado a PEP.

17. En plantas de ambientes secos existe una vía metabólica llamada fotosíntesis CAM. La fijación de CO2 ocurre durante la noche y con él se forma malato, que se almacena en las vacuolas. Durante el día, el malato es liberado, se descarboxila y el CO2 ingresa en el ciclo de Calvin.

Utilización de los productos de la fotosíntesis

18. El gliceraldehído fosfato producido por el ciclo de Calvin se integra en glucosa o fructosa. Las células vegetales usan estas sustancias para elaborar almidón, celulosa y sacarosa; las células animales las usan para elaborar glucógeno. Todas las células utilizan azúcares para la elaboración de otros carbohidratos, lípidos y aminoácidos. Además, la oxidación del carbono fijado es la fuente de energía del ATP en todas las células heterótrofas.

El balance entre la fotosíntesis y la respiración

19. En las plantas, la fotosíntesis y la respiración ocurren en forma simultánea. La intensidad lumínica a la cual se igualan sus velocidades es el punto de compensación para la luz. La concentración de CO2 a la cual se igualan es el punto de compensación para el CO2. Por debajo de estos puntos de compensación, la respiración excede a la fotosíntesis y la planta no crece. Como muchos órganos vegetales no fotosintetizan, para que una planta se mantenga y crezca, la fotosíntesis debe exceder largamente la tasa de respiración.

lunes, 11 de octubre de 2010

ACTIVIDAD EVIDENCIAL

1. Describa brevemente las fases del ciclo celular.

2. La duración de una vuelta completa del ciclo celular varía, con dependencia de ciertos factores. Mencione al menos tres.

3. ¿Por qué es tan importante la llamada fase S?

4. ¿El ciclo celular puede detenerse temporariamente en alguna etapa?

5. ¿Existe algún mecanismo celular que evite la proliferación de células cancerosas? Si su respuesta es afirmativa, descríbalo brevemente.

6.¿Qué son los "puntos de control" que se verifican durante el ciclo celular y con qué se relacionan?

7. ¿Cómo se denomina cada una de las copias de DNA que forman el cromosoma una vez iniciada la mitosis, cómo están unidas y en qué sitio?

8. ¿Cómo y cuándo se forma el huso mitótico?

9. ¿En cuántas fases se divide la mitosis y cómo se denominan?

10. ¿En qué se diferencia la apoptosis de la necrosis y cómo afecta a un organismo pluricelular?

11. La fecundación y la meiosis se consideran fuentes de variabilidad génica. ¿Por qué?

REPRODUCCION CELULAR

La distribución de la información genética

1. La división celular permite la reproducción de los organismos unicelulares y pluricelulares. En estos últimos posibilita, además, el desarrollo de un individuo a partir de una única célula y la reparación de los tejidos dañados.

2. En los procariontes y los eucariontes, los cromosomas se duplican antes de la división celular. Luego se distribuyen entre las células hijas de tal manera que se produce una distribución equitativa del material hereditario. En los eucariontes existen dos tipos de división celular: la mitosis y la meiosis.
La vida de una célula: el ciclo celular

3. El ciclo celular es la sucesión de fases de crecimiento y división que ocurren en la vida de una célula. En él se pueden reconocer tres fases: interfase, mitosis y citocinesis.


El ciclo celular

La división celular, constituida por la mitosis (cariocinesis o división del núcleo) y la citocinesis (división del citoplasma), ocurre después de completarse las tres fases preparatorias de la interfase: fases G1, S y G2.

4. La interfase abarca tres etapas: G1, S y G2. Durante G1, la célula crece y se duplican las organelas; en las células animales, los centríolos empiezan a duplicarse. En la etapa S se duplican el DNA y sus proteínas asociadas. En G2 comienzan a ensamblarse las estructuras relacionadas con la división celular, los cromosomas se condensan y los centríolos terminan de duplicarse.

5. El ciclo celular está regulado por estímulos externos e internos. La falta de nutrientes, los cambios de temperatura y de pH, y la presencia de células contiguas pueden detener la división celular, mientras que ciertas hormonas y factores de crecimiento la estimulan. La regulación interna es realizada mediante la fosforilación y la degradación de complejos proteicos llamados Cdk-ciclinas, formados por una subunidad reguladora (la ciclina) y otra catalítica (la cinasa). La actividad de estos complejos determina si el ciclo celular avanza o se detiene.
La división del núcleo y del citoplasma: mitosis y citocinesis

6. La mitosis es un proceso continuo, en el que se reconocen cuatro fases: profase, metafase, anafase y telofase.

7. Al comienzo de la mitosis, cada cromosoma está formado por dos cromátidas hermanas y se encuentra totalmente condensado. El huso mitótico está armado y las fibras cinetocóricas están unidas a los centrómeros de los cromosomas. Las fibras del huso separan las cromátidas hermanas, que son conducidas a polos opuestos de la célula. Así se asegura la distribución equitativa de la información genética entre las dos células hijas.

8. La citocinesis divide a la célula madre en dos hijas casi iguales. Cada una de ellas recibe un juego completo de cromosomas y alrededor de la mitad del citoplasma, las organelas y las macromoléculas de la célula madre.

Mitosis en una célula vegetal con cuatro cromosomas

El huso se forma aunque no haya centríolos presentes ni ásteres visibles. El plano de la división celular se establece en la fase G2 tardía del ciclo celular, cuando los microtúbulos del citoesqueleto se reorganizan en una estructura circular, la banda de preprofase, justo por dentro de la pared celular. Aunque esta banda desaparece al comenzar la profase, determina la ubicación futura del ecuador y de la placa celular. Los microtúbulos de la banda se reensamblan luego en el huso, en una zona clara que se origina alrededor del núcleo en el curso de la profase. En la citocinesis, que comienza durante la telofase, la placa celular se extiende en forma gradual hacia afuera hasta que alcanza la región exacta de la pared celular ocupada previamente por la banda de preprofase. Las vesículas que originan la placa celular son guiadas a su posición por las fibras del huso que quedan entre los núcleos hijos.
Senescencia: el envejecimiento de una célula

9. El número de divisiones de las células eucariontes en cultivo disminuye con el tiempo y está correlacionado con el acortamiento progresivo de los telómeros. Finalmente, las células entran en un estado de senescencia, que se caracteriza por la ausencia de división celular.

El proceso de muerte celular: apoptosis versus necrosis

10. La apoptosis es un proceso de muerte celular programada genéticamente. En los vertebrados, controla el número de neuronas durante el desarrollo del sistema nervioso, elimina células defectuosas y da forma a los órganos en desarrollo. Junto con la mitosis, modela las formas de los organismos.

11. Las caspasas son enzimas que degradan las proteínas de la lámina nuclear y del citoesqueleto, y provocan la apoptosis. Su actividad está controlada por otras proteínas que, a su vez, responden a factores extracelulares.

12. La necrosis es un tipo de muerte celular no controlada. Suele producir la hinchazón y el estallido de las células.

La división celular: un modo de reproducción de un organismo

13. En los organismos unicelulares, la división celular está asociada con la reproducción y permite la aparición de dos réplicas exactas de cada individuo.
Hacia la reproducción sexual

14. La reproducción sexual ocurre en la mayoría de los eucariontes. Requiere dos progenitores y siempre involucra dos procesos: la meiosis y la fecundación.
Células haploides, diploides y poliploides: distinto número de dotaciones cromosómicas

15. El número de cromosomas se mantiene constante entre los individuos de una misma especie.

16. Las células somáticas de la mayoría de las plantas y animales son diploides (tienen una dotación doble de cromosomas), mientras que sus gametos son haploides (tienen una dotación simple). Las células poliploides tienen más de dos dotaciones cromosómicas. El número haploide de cromosomas se designa n y el número diploide, 2n.

17. En toda célula diploide, cada cromosoma tiene su par homólogo. Uno de los cromosomas homólogos proviene del gameto de uno de los progenitores y su par, del gameto del otro progenitor.

La meiosis: una reducción en el número de cromosomas

18. La meiosis consiste en dos divisiones sucesivas que producen cuatro células hijas haploides. De esta forma se compensa el efecto multiplicador de la fecundación.

Separación y reunión de los cromosomas homólogos

Durante la meiosis, los miembros de cada par de cromosomas homólogos se separan y cada gameto haploide (n), producido a partir de una célula diploide (2n), lleva sólo un miembro de cada par. En la fecundación, los núcleos del espermatozoide y del óvulo se unen en el cigoto, cuyo núcleo contiene, nuevamente, los cromosomas homólogos de a pares. Cada par está formado por un cromosoma homólogo proveniente de un progenitor y el otro homólogo proveniente del otro progenitor. En los diagramas usamos los colores rojo y verde para diferenciar los cromosomas paternos de los maternos

19. En cada una de las dos divisiones meióticas se pueden reconocer las mismas fases que en la mitosis.

20. Al comienzo de la meiosis I, los cromosomas homólogos se aparean y se produce el entrecruzamiento: un fragmento de cromátida de un homólogo se intercambia con un fragmento de cromátida del otro. Durante la meiosis II, las cromátidas de cada homólogo se distribuyen al azar entre las células hijas.
La mitosis y la meiosis: procesos similares pero diferentes

21. En la meiosis, cada núcleo diploide se divide dos veces, pero los cromosomas se duplican una sola. En la mitosis, en cambio, cada división es precedida por una duplicación cromosómica.

22. Durante la meiosis, los cromosomas homólogos se aparean, se entrecruzan y se segregan al azar. Nada de esto ocurre durante la mitosis.

23. La mitosis ocurre en células haploides y diploides; la meiosis, sólo en diploides.

La meiosis en organismos con distintos ciclos vitales.

24. En muchos organismos unicelulares y hongos haploides, la meiosis ocurre inmediatamente después de la fusión de las células fecundantes.

25. En las plantas que se reproducen en forma sexual se alternan una fase haploide que por mitosis produce gametos y una fase diploide que por meiosis produce esporas.

26. En los animales diploides, la meiosis produce gametos haploides.

Posibles errores en la meiosis

27. Los cromosomas homólogos o sus cromátidas se pueden separar en forma incorrecta y dar lugar a la aparición de gametos con cromosomas faltantes o sobrantes.
Las consecuencias de la reproducción sexual

28. En las especies con reproducción sexual ocurren tres procesos que actúan como fuentes de variabilidad genética: el entrecruzamiento, la segregación al azar de los cromosomas de los progenitores y la fecundación. Esta variabilidad es un aspecto clave en el proceso evolutivo de los seres vivos.

lunes, 4 de octubre de 2010

REPRODUCCION CELULAR: MEIOSIS

La cromatina es un complejo macromolecular con largos y numerosos filamentos de ácido desoxirribonucleico (ADN), que se enrollan en moléculas proteicas llamadas histonas. Formada por un 60% de proteínas, 35% ADN y 5% de ARN, la cromatina está ubicada dentro del núcleo de las eucariotas. Cuando la célula está en reposo, etapa de interfase del ciclo reproductivo celular (entre dos mitosis), la función de la cromatina es brindar información genética para que se efectúe la transcripción y síntesis de proteínas. Cuando las células comienzan a reproducirse, la cromatina se condensa en estructuras alargadas llamadas cromosomas, cuya función es transmitir la información genética presente en el ADN a la descendencia. Cada cromosoma está formado por dos brazos unidos a una constricción central llamada centrómero. Previo a la división celular, los cromosomas se duplican y se unen a través del centrómero. A su vez, el centrómero está rodeado por el cinetocoro, sustancia proteica que se fija a los filamentos del uso mitótico y actúa en la separación de las cromátidas al dividirse la célula.

Cada especie posee un número fijo de cromosomas. En la especie humana, todas las células del organismo, denominadas células somáticas, tienen dos juegos completos de 23 cromosomas, es decir, 23 pares de cromosomas que se encuentran dentro del núcleo. A raíz de dicha duplicación, la especie humana tiene 46 cromosomas en el núcleo de cada célula. Pero hay una excepción. En las células sexuales o gametas, esto es en los óvulos y espermatozoides, los cromosomas no se disponen de a pares, con lo cual cada gameta lleva en su interior 23 cromosomas solamente. Las células que presentan doble juego de cromosomas, como las somáticas, se denominan diploides y se reconocen como 2n. Las células sexuales, al tener la mitad de los cromosomas que hay en las células somáticas, se llaman haploides, identificándose con la letra ene (n). Por lo tanto, en los humanos 2n es igual a 46, mientras n es igual a 2 3.

¿Por qué motivo las células sexuales tienen la mitad de los cromosomas que tienen el resto de las células de todo el organismo? Porque al producirse la entrada del espermatozoide haploide (n=23) en el óvulo haploide (n=23), se forma una primera célula diploide llamada cigoto (2n=46) que dará lugar a la formación de un nuevo individuo humano con 46 cromosomas. Si las células sexuales fueran diploides en lugar de haploides, tras la fecundación se formaría un cigoto 4n=92, que a su vez daría descendencia 8n= 184, incompatible con la vida. Por medio de la meiosis, que es un proceso especial de división celular, a partir de células diploides se forman los gametos sexuales haploides. La unión de ambos gametos haploides dará origen a un cigoto diploide que tendrá una copia de cromosomas maternos y otra copia de cromosomas paternos, es decir, dos juegos para cada característica hereditaria.

MEIOSIS
Es un proceso de división celular propio de organismos con reproducción sexual, mediante el cual se forman las gametas (gametogénesis). A partir de cada célula diploide de las gónadas se originan espermatozoides y óvulos funcionales, todos haploides. Mientras que las células somáticas se reproducen en forma asexual o mitosis, las células sexuales se generan mediante reproducción sexual o meiosis. En la mitosis, partiendo de células diploides ( 2n) se obtienen células también diploides. En cambio en la meiosis, a partir de células diploides se producen células haploides (n), asegurando de esta forma un número constante de cromosomas a la descendencia, donde la mitad del ADN es aportado por el padre y la otra mitad por la madre. La meiosis permite la recombinación de los cromosomas homólogos de los progenitores y se intercambia la información genética. Como se mencionó anteriormente, al unirse ambas células haploides paternas en la fertilización, se genera un cigoto diploide que dará origen a descendientes con el número de cromosomas propio de la especie. Es así como cada progenitor aporta la mitad de su código genético a la célula hija. La meiosis se realiza en dos etapas, llamadas meiosis I y meiosis II. Cada una de ellas consta de cuatro fases denominadas profase, metafase, anafase y telofase. En la meiosis I, cada par homólogo de cromosomas se sitúan en los distintos núcleos de las células formadas.

En la meiosis II, las cromátidas hermanas de cada cromosoma se separan distribuyéndose en los núcleos de las células hijas (A en el esquema). Por lo tanto, la meiosis da por resultado cuatro células con cromosomas haploides.

La interfase que sucede previo a la meiosis es idéntica a la que ocurre antes de la mitosis. En dicha etapa previa se producen tres fases.

Fase G-1
La célula inicia su crecimiento, se forman las organelas y se produce la síntesis de proteínas. En esta fase la célula aumenta de tamaño.

Fase S
Es más larga que en la mitosis. Se produce la replicación del ADN, y como resultado los cromosomas, que hasta ahora tenían una sola cromátida, se duplican quedando con dos cromátidas idénticas. Dicha duplicación da lugar a que el núcleo ahora tenga el doble del ADN y de proteínas que al principio.

Fase G-2
Esta etapa es más corta que en la mitosis, y en ocasiones no se presenta. Los cromosomas comienzan a condensarse. Los centríolos se duplican y empiezan a dirigirse a cada polo de la célula.

MEIOSIS I

Profase I
Se produce la síntesis de ARN en el núcleo. La carioteca permanece inalterada hasta el final de toda la fase. La profase I se divide en cinco etapas.
-Leptoteno: los cromosomas empiezan a condensarse y se anclan a la membrana nuclear.
-Zigoteno: los cromosomas homólogos (materno y paterno) comienzan a aparearse. La unión o sinapsis se produce a lo largo de todo el cromosoma. Cada par de cromosomas fusionados forma un bivalente, constituido por cuatro cromátidas.
-Paquiteno: en esta etapa se produce el llamado “crossing-over”, donde las cromátidas homólogas no hermanas se entrecruzan para intercambiar material genético. El lugar de entrecruzamiento se denomina quiasma.

-Diploteno: se separan los cromosomas apareados, pero quedan unidos por el quiasma. En la formación de los óvulos humanos (ovogénesis) el proceso meiótico se detiene en el diploteno hacia el séptimo mes de gestación, reiniciándose cuando la niña alcanza la pubertad. Esta pausa se denomina dictiotena.
-Diacinesis: los bivalentes se preparan para acercarse a la zona ecuatorial de la célula. Comienza a desaparecer la membrana nuclear y el nucléolo. Finaliza la síntesis de ARN.

Metafase I
Cada par de cromosomas homólogos (bivalentes) se desplaza hacia la zona ecuatorial de la célula. Las cromátidas se disponen en grupos de a cuatro (tétrada). Como lo hacen al azar, existe un 50 % de posibilidades de que la descendencia obtenga los cromosomas homólogos maternos o paternos.

Anafase I
Los cromosomas homólogos se dirigen a cada extremo de la célula. La cantidad de cromosomas paternos y maternos en cada polo celular varía al azar en cada meiosis.

Telofase I
Se forman dos células hijas haploides, ya que cada una tiene la mitad del número de cromosomas. Comienza a formarse la carioteca en cada célula haploide, que tiene un cromosoma con dos cromátidas.

MEIOSIS II
Las cromátidas de los cromosomas homólogos se sitúan en cada célula hija. Los pasos de la meiosis II son idénticos a los de la mitosis de las células somáticas. Esquema de la mitosis

Profase II
Los cromosomas se condensan, se engrosan y se hacen visibles. Los centríolos, conectados entre sí por medio de filamentos, se dirigen a los polos opuestos de la célula. Desaparece el nucléolo y la membrana nuclear.

Metafase II
Los cinetocoros de cada cromosoma se unen a las fibras del huso acromático recién formado. Los cromosomas se ubican en línea recta, en el plano ecuatorial de la célula. Las cromátidas se disponen en grupos de a dos, a diferencia de lo que sucede en la metafase I que lo hacen de a cuatro, formando tétradas.

Anafase II
Los centrómeros de cada cromosoma se dividen y las cromátidas se separan y se desplazan hacia los polos opuestos a través del huso acromático. A partir de ahora, cada cromátida es un cromosoma.

Telofase II
Cada cromosoma no duplicado se agrupa en los polos opuestos de la célula. Desaparecen los centríolos y el huso acromático. Comienzan a formarse la membrana nuclear y el nucléolo. El citoplasma empieza a dividirse a la altura de la placa ecuatorial dando por resultado dos células hijas. Las dos sucesivas divisiones dan lugar a cuatro núcleos haploides con una combinación diferente de genes.

En resumen, la meiosis permite la obtención de células especializadas con un papel fundamental en la reproducción sexual. A raíz del entrecruzamiento de cromosomas homólogos, la meiosis hace posible la génesis de gametos muy variados. A partir de células diploides se obtienen gametas haploides que, tras la fecundación, dan lugar a la primera célula diploide de todo organismo superior, con la cantidad de cromosomas propia de la especie.

http://hnncbiol.blogspot.com/2008/01/m-e-i-o-s-i-s.html

REPRODUCCION CELULAR: MITOSIS

La reproducción es un proceso mediante el cual las células se dividen para multiplicarse. Las procariotas se reproducen por división simple, llamada también fisión binaria. En los organismos pluricelulares se distinguen dos tipos de células eucariotas: las somáticas, que forman parte de todos los tejidos y las sexuales, representadas en los animales superiores por los óvulos y los espermatozoides.
Dentro del núcleo, las células somáticas contienen una cantidad de cromosomas propia de cada especie, de las cuales la mitad fueron heredadas del padre y la otra mitad de la madre al momento de la fecundación. Por ejemplo, los humanos poseen 23 pares de cromosomas (46 en total), el caballo 32 pares (64 en total) y el perro 39 pares (78 en total). Estas células somáticas, al tener doble juego de cromosomas se denominan diploides, y se simbolizan como 2n. Por el contrario, las células sexuales contienen la mitad de la dotación total de cromosomas, por lo que se las llama haploides (n). De los ejemplos anteriores, surge que el humano posee 23 cromosomas en cada óvulo y espermatozoide, el caballo 32 cromosomas y el perro 39. Cuando se produce la fertilización, ambas células haploides paternas aportan toda su carga cromosómica para dar lugar a la primer célula diploide, llamada cigoto, que dará origen a un nuevo individuo con la cantidad de cromosomas propia de la especie.
Las células somáticas necesitan reproducirse para permitir el crecimiento de los tejidos y para reemplazar células muertas. Lo hacen a partir de células diploides que generan nuevas células diploides idénticas a la de origen. Este proceso se denomina mitosis, que es un mecanismo de reproducción asexual puesto que de una célula madre se obtienen dos células hijas idénticas, con la misma información genética.
Para la formación de células sexuales o gametos, a partir de células diploides se producen células haploides. Esto asegura un número constante de cromosomas a la descendencia, puesto que la mitad del ADN es aportado por el padre y la otra mitad por la madre. Este proceso se llama meiosis, que a diferencia de la mitosis es un tipo de reproducción sexual, ya que se recombinan los cromosomas homólogos de los progenitores y se intercambia la información genética. VER MEIOSIS
La mitosis es un proceso ordenado que se repite en el tiempo, donde las células crecen y se dividen en dos células hijas idénticas a la de origen. Cada ciclo se inicia con el nacimiento de una nueva célula y finaliza cuando esa célula origina dos células hijas. El ciclo celular se compone de dos períodos: una interfase y una fase M. La duración total del ciclo celular es de 24 horas, aunque varía según la estirpe celular.

1-INTERFASE
La interfase es la más larga del ciclo celular. Sucede entre dos mitosis o divisiones celulares y comprende tres etapas: G-1, S y G-2.

Fase G- 1 La célula inicia su crecimiento, se forman las organelas y se produce la síntesis de proteínas. En esta fase la célula aumenta de tamaño. La fase G-1 tiene una duración de 6 a 12 horas. Las células nerviosas y musculares esqueléticas no vuelven a dividirse, permaneciendo en la denominada fase G-0, ya que se retiran del ciclo celular.

Fase S
Se produce la síntesis de ADN, y como resultado los cromosomas se duplican quedando con dos cromátidas idénticas cada uno de ellos. Dicha duplicación da lugar a que el núcleo ahora tenga el doble del ADN y de proteínas que al principio. La fase S dura entre 6 y 8 horas.
Fase G-2
En esta etapa los cromosomas comienzan a condensarse. Los centríolos se duplican y empiezan a dirigirse a cada polo de la célula. G-2 dura alrededor de 3 a 4 horas.

2- FASE M
En esta fase la célula progenitora dará lugar a la formación de dos células hijas idénticas. Incluye a la mitosis y a la citocinesis.


MITOSIS

Cuando se inicia la mitosis, la red de cromatina nuclear se va condensando y da lugar a la aparición de los cromosomas. Tanto la cromatina como los cromosomas están formados por proteínas y ADN, con lo cual tienen la misma composición pero distinta forma. Cada cromosoma se compone de dos cromátidas unidas entre sí a través del centrómero. Tras su aparición, los cromosomas se curvan y el núcleo se divide en dos, conteniendo cada uno la mitad de todos los cromosomas. Luego los núcleos se separan y en la parte final de la mitosis se divide el citoplasma, dando por resultado dos células hijas con la misma carga genética que la célula madre. La mitosis consta de cuatro etapas: profase, metafase, anafase y telofase. El proceso sucede en forma continua, sin detenerse. La mitosis dura entre 20 minutos y dos horas, dependiendo del tipo de célula.

a- Profase
En esta etapa los cromosomas se condensan y engrosan haciéndose visibles. Los centríolos se dirigen a los polos opuestos, quedando conectados entre sí por filamentos. La carioteca desaparece.

b- Metafase
Se forma el huso acromático que une a los centríolos. Los cromosomas se disponen en línea recta en el plano ecuatorial de la célula con los centrómeros unidos a una hebra del huso acromático.

c- Anafase
Los centrómeros de cada cromosoma se dividen. Las cromátidas de cada cromosoma se separan y se desplazan hacia los polos opuestos a través del huso acromático. Hacia el final de la anafase comienza a dividirse el citoplasma.

d- Telofase
Cada cromátida (cromosomas hijos) se agrupan en los polos opuestos y son cada vez más difusos. Desaparecen los centríolos y el huso acromático. Comienzan a formarse la membrana nuclear y el nucléolo. El citoplasma se hace más estrecho a la altura de la placa ecuatorial.

Citocinesis

Es la última etapa de la fase M, donde el citoplasma se va estrechando a nivel de la zona ecuatorial hasta que se divide y quedan formadas dos células hijas, que han de iniciar el período de interfase con el objetivo de crecer y comenzar a reproducirse. Con la citocinesis finaliza la fase M y se inicia un nuevo ciclo celular.En las células vegetales, la mitosis es similar a la descrita para las células animales, aunque con algunas diferencias. Como las células vegetales no tienen centríolos, el huso acromático se forma por haces de microtúbulos durante la metafase a partir de los llamados “centros amorfos”. Por la presencia de la pared celular, la división del citoplasma es diferente a la de células animales. En lugar del estrechamiento en estas últimas, durante la telofase numerosas vesículas derivadas del complejo de Golgi se unen y dan lugar a una placa celular en el centro de la célula. Cuando la placa contacta con la membrana plasmática, una nueva pared celular se forma entre las dos membranas de la placa celular, dando lugar a dos células hijas, cada una con su propia membrana.


http://hnncbiol.blogspot.com/2008/01/reproduccion-celular-mitosis.html

AUTOEVALUACION PARCIAL

1. ¿Cuál de las siguientes opciones describe mejor la lógica del proceso científico?
a) Si propongo una hipótesis para ser sometida a prueba, los experimentos y las observaciones la apoyarán.
b) Si mi predicción es correcta, ésta conducirá a una hipótesis para ser sometida a prueba.
c) Si mis observaciones son precisas, ellas apoyarán mi hipótesis.
d) Si mi hipótesis es correcta, puedo esperar ciertos resultados de mis experimentos.

2. ¿Cuál de los siguientes listados representa la secuencia correcta de niveles jerárquicos en la estructura de la vida, procediendo hacia abajo a partir de un individuo?
a) sistema de órganos, población de células, tejido nervioso, cerebro.
b) organismo, sistema de órganos, tejido, célula, órgano.
c) sistema nervioso, cerebro, tejido nervioso, célula nerviosa.
d) sistema de órganos, tejido, molécula, célula.

3. Un investigador está tratando de identificar una estructura celular que aisló de un organismo multicelular. Algunos de sus resultados determinan que: La estructura celular es capaz de duplicarse, si se le ilumina libera oxígeno y posee doble bicapa lipídica. Del análisis de estos resultados, es posible inferir que la estructura celular es él o la:
a) peroxisoma.
b) lisosoma.
c) cloroplasto.
d) mitocondria.

4. En la célula vegetal, el orgánulo que no posee enzimas en su interior es:
a) el núcleo.
b) la vacuola.
c) las mitocondrias.
d) el cloroplasto.

5. Una sustancia X se encuentra diez veces más concentrada en la célula de la raíz que en el suelo en que se encuentra. Al respecto se puede afirmar correctamente que la sustancia X ingresó por:
a) difusión simple.
b) transporte pasivo.
c) transporte activo.
d) difusión facilitada.

6. Los siguientes textos están relacionados con sustancias orgánicas.
I. Pueden actuar como esteroides que regulan la concentración de sal en el cuerpo.
II. Catalizan las reacciones bioquímicas en las que participan, sin sufrir alteración alguna.
III. Reducen la cantidad de energía necesaria para empezar una reacción química en un sistema vivo.
IV. Se requieren cantidades muy pequeñas de estas sustancias, para que se efectúe su acción aceleradora de reacciones en el nivel molecular.
¿Cuál o cuáles se refieren a funciones de proteínas?
a) II y III solamente.
b) III y IV solamente.
c) II, III y IV.
d) I y III.

7. Los siguientes textos se refieren a carbohidratos.
I. Es un nutriente cuya combustión deja menos residuos en el organismo, por eso el cerebro y el sistema nervioso solamente utilizan glucosa para obtener energía, de este modo se evita la presencia de residuos tóxicos (como el amoniaco) en las células nerviosas.
II. Son grupos de polisacáridos, moléculas formadas por cadenas de otras moléculas más pequeñas denominadas monosacáridos y que en ocasiones alcanzan un gran tamaño.
III. La celulosa es un componente estructural de las células vegetales y le brinda protección a la célula.
IV. Los almidones se encuentran formados por el encadenamiento de moléculas de glucosa.
¿Cuáles se refieren a sus funciones?
a) I y III.
b) I y IV.
c) II y III.
d) II y IV.

8. El contenido de los siguientes recuadros está relacionado con los diferentes tipos de células.
K- Células procarióticas. L- Células eucarióticas.
I- El ADN de este tipo de células no está contenido en un núcleo y faltan las organelas especializadas como mitocondrias y cloroplastos.
II- Este tipo de células tiene varias clases de organelas rodeados de membrana, incluido un núcleo con el ADN.
III- Tienen el material genético envuelto por una membrana que forma un órgano esférico llamado núcleo.
IV- Carecen de membrana nuclear.
¿Cuál es la forma correcta de relacionar la información anterior?
a) K II, IV y L I, III.
b) K I, II y L III, IV.
c) K I, IV y L II, III.
d) K I, II, III y L IV.

9. Considere el siguiente contenido relacionado con tipos de células.
I. Animal.
II. Vegetal.
III. Procariótica.
a. Una alga azul verdosa es un ser vivo autótrofo sintetizante, carente de una membrana nuclear.
b. Posee grandes vacuolas para almacenamiento de sustancias.
c. Son células que carecen de pared celular.
¿Cuál es la relación correcta entre el contenido de los recuadros?
a) I a, II b y III c.
b) I a, II c y III b.
c) I c, II b y III a.
d) I b, II c y III a.

10. Las siguientes afirmaciones están relacionadas con componentes membranales.
I. Empaca materiales en vesículas que son transportadas a otras partes de la célula o la membrana plasmática para su exportación.
II. Digiere organelas defectuosas o que no funcionan de manera adecuada por medio de enzimas que hay en su interior.
¿A cuáles componentes membranales se refieren?
a) I lisosoma y II retículo endoplasmático.
b) I retículo endoplasmático y II vacuola.
c) I complejo de Golgi y II lisosoma.
d) I vacuola y II complejo de Golgi.

11. Acerca de las membranas celulares y la presión osmótica, indique la respuesta correcta:
a) Si el medio es hipotónico el agua tenderá a entrar en la célula para equilibrar la presión con el exterior.
b) Si el medio es hipertónico, el agua tiende a salir de la célula.
c) Las células en un medio isotónico no sufren alteraciones en su medio interno.
d) Todas las anteriores son verdaderas.

12. El transporte activo de moléculas a través de la membrana de la célula:
a) Requiere energía y se produce en contra de gradiente.
b) Sólo ocurre para el agua y moléculas pequeñas en contra de gradiente.
c) Requiere una proteína transportadora pero no requiere energía.
d) Requiere energía y que las moléculas transportadas sean grandes.

13. Se producen fenómenos de plasmólisis cuando introducimos células en una disolución...
a) Hipertónica.
b) Hipotónica.
c) Isotónica.
d) Ninguna de las respuestas anteriores es correcta.

14. Una molécula de glucosa está relacionada con el almidón, como un (a):
a) esteroide lo está con un lípido.
b) proteína lo está con un aminoácido.
c) ácido nucleico lo está con un polipéptido.
d) nucleótido lo está con un ácido nucleico.

15. Las células vegetales se caracterizan por:
a) No tener centriolos y ser heterótrofas.
b) Tener mitocondrias, cloroplastos y ser heterótrofas.
c) Tener cloroplastos, pared celular y ser autótrofas.
d) Tener pared celular, cloroplastos, centriolos y ser autótrofas.
e) Tener pared celular, cloroplastos y ser heterótrofos.

AUTOEVALUACION PARCIAL

1. ¿Cuál de las declaraciones siguientes hace una mejor distinción entre hipótesis y teoría científica?
a) Las teorías son hipótesis que han sido demostradas.
b) Las hipótesis son suposiciones tentativas, las teorías son respuestas correctas a preguntas sobre la naturaleza.
c) Las hipótesis generalmente tienen un alcance reducido; las teorías tienen un poder explicativo amplio.
d) Hipótesis y teoría son términos diferentes para básicamente la misma cosa en ciencia.

2. ¿Cuál de los siguientes listados representa la secuencia correcta de niveles jerárquicos en la estructura de la vida, procediendo hacia abajo a partir de un individuo?
a) cerebro, medula espinal, sistema de órganos, célula nerviosa, tejido nervioso.
b) organismo, sistema de órganos, tejido, célula, órgano.
c) sistema nervioso, cerebro, tejido nervioso, célula nerviosa.
d) sistema de órganos, tejido, molécula, célula.

3. “La célula es la unidad fundamental de la vida, todos los organismos vivientes son células o conjunto de ellas y la célula es la menor unidad de vida capaz de reproducción independiente.” ¿Cuál es el nombre del científico que dio la afirmación descrita anterior?
a) Robert Hooke.
b) Charles Darwin.
c) Gregorio Mendel.
d) Rudolph Virchow.

4. Analice la información referente a componentes orgánicos de la materia viva. ¿Cuáles números romanos señalan las afirmaciones que se refieren a la función de los carbohidratos?
I- Se clasifican en aceites, grasas y ceras.
II- Son fuente de energía para la célula.
III- Son componentes estructurales de las células.
IV- Todos los consumidos por el hombre se transforman en glucosa.
a) I y II.
b) I y III.
c) II y IV.
d) III y IV.

5. ¿Cuál de los siguientes eventos se refiere a un proceso anabólico?
a) Crecimiento de los seres vivos.
b) Transformación de aminoácidos en glicógeno.
c) Digestión de alimentos y transformación física.
d) Absorción de aminoácidos a través de difusión.

6. Compuestos utilizados en el experimento de Miller-Urey:
a) HCN, COOH, OH
b) CH4, H2O, H2, NH4
c) H2O, CO2, CH4, H2
d) CH4, H2O, O2, NH4

7. ¿Cuál de los siguientes enunciados NO es correcto en relación con el citoesqueleto?
a) Ayuda a mantener la forma de las células.
b) Una vez formado, es permanente y no se modifica.
c) Está compuesto de microfilamentos, microtúbulos y filamentos intermedios.
d) Es muy importante su función en el movimiento celular.

8. Un estudiante macera tejido de una planta y después centrifuga la mezcla. El obtiene algunos orgánulos del sedimento en el tubo de ensayo que toman CO2 y liberan O2 ¿cuáles son?
a) Cloroplastos.
b) Ribosomas.
c) Núcleos.
d) Mitocondrias.

9. ¿A cuál de los siguientes orgánulos se le asignó una función errónea?
a) Aparato de Golgi: Empaca material.
b) Nucléolo: Fabrica RNA.
c) Lisosoma: Contiene enzimas de degradación.
d) Ribosoma: Sintetiza ATP.

10. El transporte activo de moléculas a través de la membrana de la célula:
a) Requiere energía y se produce en contra de gradiente.
b) Sólo ocurre para el agua y moléculas pequeñas en contra de gradiente.
c) Requiere una proteína transportadora pero no requiere energía.
d) Requiere energía y que las moléculas transportadas sean grandes.

11. Elija la respuesta correcta:
a) Todos los lípidos son grasas.
b) Todas las grasas contienen glicerina.
c) Todas las grasas son saturadas.
d) Todas las grasas son triacilglicéridos.

12. Se producen fenómenos de plasmólisis cuando introducimos células en una disolución...
a) Hipertónica.
b) Hipotónica.
c) Isotónica.
d) Ninguna de las respuestas anteriores es correcta.

13. El núcleo celular:
a) Presenta una forma, tamaño y estructura constante durante la vida celular.
b) Posee una membrana idéntica a la plasmática en estructura y composición.
c) Tiene uno o varios nucléolos compuestos por ADN.
d) Contiene cromatina en distintos estados de condensación.

14. ¿Cuál de los siguientes orgánulos es considerado como el aparato digestivo celular?
a) Aparato de Golgi.
b) Mitocondrias.
c) Lisosomas.
d) Centrosomas.

15. Que afirmación es falsa respecto al nucléolo:
a) Estructura densa y esférica.
b) Visible al microscopio óptico durante interfase y profase.
c) Su número varía según las especies.
d) Su función es la síntesis del ARN mensajero.

16. En relación al tipo de organización celular: procariotas y eucariotas, señale la pareja correcta:
a) Euglenas - procariotas.
b) Espiroquetas - eucariotas.
c) Cianobacterias - eucariotas.
d) Bacterias verdes - procariotas.

17. Relacione cada orgánulo con la función que realiza e indique la respuesta correcta:
1)mitocondria a) fotosíntesis
2)cloroplasto b) biosíntesis de lípidos
3) retículo endoplásmico liso (REL) c) biosíntesis de proteínas
4)ribosomas d) respiración aerobia

a) 1-d, 2-a, 3-b, 4-c
b) 1-b, 2-d, 3-a, 4-c
c) 1-d, 2-a, 3-c, 4-b
d) 1-b, 2-a, 3-c, 4-d

18. Acerca de las membranas celulares y la presión osmótica, indique la respuesta correcta:
a) Si el medio es hipotónico el agua tenderá a entrar en la célula para equilibrar la presión con el exterior.
b) Si el medio es hipertónico, el agua tiende a salir de la célula.
c) Las células en un medio isotónico no sufren alteraciones en su medio interno.
d) Todas las anteriores son verdaderas.

jueves, 30 de septiembre de 2010

EVALUACION PARCIAL

1. ¿Cuál de las siguientes opciones describe mejor la lógica del proceso científico?
a) Si propongo una hipótesis para ser sometida a prueba, los experimentos y las observaciones la apoyarán.
b) Si mi predicción es correcta, ésta conducirá a una hipótesis para ser sometida a prueba.
c) Si mis observaciones son precisas, ellas apoyarán mi hipótesis.
d) Si mi hipótesis es correcta, puedo esperar ciertos resultados de mis experimentos.
e) Si mis pruebas se diseñan bien, me conducirán a una hipótesis que podría ser sometida a prueba.

2. ¿Cuál de los siguientes listados representa la secuencia correcta de niveles jerárquicos en la estructura de la vida, procediendo hacia abajo a partir de un individuo?
a) cerebro, medula espinal, sistema de órganos, célula nerviosa, tejido nervioso.
b) sistema de órganos, población de células, tejido nervioso, cerebro.
c) organismo, sistema de órganos, tejido, célula, órgano.
d) sistema nervioso, cerebro, tejido nervioso, célula nerviosa.
e) sistema de órganos, tejido, molécula, célula.

3. Una molécula de glucosa está relacionada con el almidón, como un (a):
a) esteroide lo está con un lípido.
b) proteína lo está con un aminoácido.
c) ácido nucleico lo está con un polipéptido.
d) nucleótido lo está con un ácido nucleico.
e) un aminoácido lo está con un ácido nucleico.

4. Señale la respuesta verdadera:
a) Todas las proteínas tienen la misma estructura primaria.
b) La estructura primaria de una proteína se debe a factores ambientales.
c) Cada proteína diferente tiene una estructura primaria distinta.
d) Todas las proteínas adoptan una estructura cuaternaria.
e) Cada proteína guarda relación con su estructura tridimensional.

5. Las células vegetales se caracterizan por:
a) No tener centriolos y ser heterótrofas.
b) Tener mitocondrias, cloroplastos y ser heterótrofas.
c) Tener cloroplastos, pared celular y ser autótrofas.
d) Tener pared celular, cloroplastos, centriolos y ser autótrofas.
e) Tener pared celular, cloroplastos y ser heterótrofos.

6. En Biología existen distintos niveles de organización de la materia. Cuando se habla de “la unión de moléculas que forman un polímero por repetición de unidades que se llaman monómeros como por ejemplo el almidón” se trata del nivel:
a) Atómico.
b) Molecular.
c) Macromolecular.
d) Celular
e) Tridimensional.
7. La estructura primaria de una proteína se mantiene gracias a:
a) El carácter anfótero de los aminoácidos.
b) Los enlaces peptídicos.
c) Los puentes de hidrógeno formados entre distintos aminoácidos.
d) Los enlaces disulfuro.
e) Los enlaces glucosidicos.

8. Las proteínas son específicas de cada ser vivo porque:
a) Contienen aminoácidos esenciales.
b) Son diferentes según sea la alimentación del individuo.
c) Vienen determinadas por la información genética.
d) Son enzimas.
e) Son las encargadas de proporcionar energía necesaria.



9. Los primeros organismos vivos debieron ser:
a) Eucariotas.
b) Autótrofos.
c) Heterótrofos.
d) Fotosintéticos.
e) Proteicos.

10. Los ribosomas son orgánulos celulares que:
a) Intervienen en la síntesis de proteínas.
b) Son exclusivos de las células eucarióticas.
c) Trabajan en el núcleo de la célula.
d) Están en los cromosomas.
e) Tienen como función el mecanismo energético celular.

11. Los lisosomas son vesículas membranosas que:
a) Contienen enzimas hidrolíticas para la digestión intracelular.
b) Forman la cadena respiratoria.
c) Forman parte de los cilios y flagelos de la célula.
d) Son cromosomas metacéntricos.
e) Contienen la clorofila para realizar la fotosíntesis.

12. En relación a las proteínas,
1) Los aminoácidos presentan carácter anfótero es decir, se comportan como ácidos o bases según sea el pH del medio en el que se encuentren.
2) La estructura primaria de una proteína determina la secuencia de los aminoácidos que forman la cadena polipeptídica.
a) 1 es cierto y 2 es falso
b) 1 es falso y 2 es cierto
c) 1 y 2 son ciertos
d) 1 y 2 son falsos
e) No guardan ninguna relación.

13. Compuestos utilizados en el experimento de Miller-Urey:
a) H2O,HCN, CH4
b) HCN, COOH, OH
c) CH4, H2O, H2, NH4
d) H2O, CO2, CH4, H2
e) CH4, H2O, O2, NH4

14. La digestión en los animales es la desintegración de las sustancias complejas en compuestos más sencillos que pueden ser incorporados al protoplasma. La información anterior constituye un ejemplo del proceso llamado:
a) catabolismo.
b) anabolismo.
c) absorción.
d) ingestión.
e) egestión.

lunes, 13 de septiembre de 2010

ORGANIZACIÓN CELULAR

El tamaño, la forma y la organización de la célula

1. Las células son las unidades básicas de la estructura y la función biológica.

2. La mayoría de las células vegetales y animales miden entre 10 y 30 micrómetros de diámetro. Su interior está dividido en compartimientos funcionales: en el citoplasma se encuentran las organelas; en el núcleo, el DNA nuclear.

3. El tamaño celular está limitado por la capacidad del núcleo para regular las actividades metabólicas y por la relación superficie/volumen. Por lo general, las células de menor tamaño son las metabólicamente activas y las que tienen una superficie pequeña en proporción a su volumen.

Los límites de la célula

4. La matriz extracelular en los organismos pluricelulares es el conjunto de proteínas y carbohidratos localizados en el espacio que rodea a las células. Participa en la adhesión entre células y en el desarrollo de tejidos y órganos, controlando la diferenciación celular, la morfogénesis, la migración de células y el metabolismo.

5. La membrana celular mantiene separada a la célula del medio que la rodea y regula la entrada y salida de sustancias. Está formada por fosfolípidos, proteínas y, en algunos casos, colesterol. Los fosfolípidos forman una bicapa dinámica y fluida por la cual se desplazan lateralmente las proteínas (modelo de mosaico fluido). La cara interna de la membrana presenta proteínas integrales de membrana y proteínas periféricas, que presentan actividades enzimáticas, actúan como receptores de señales químicas o participan en el transporte de sustancias. La cara externa presenta cadenas cortas de carbohidratos unidas a proteínas, que cumplen funciones de adhesión celular y reconocimiento de moléculas.

6. Las células vegetales están rodeadas por una pared celular, que realiza muchas de las funciones que cumple la matriz extracelular en las células animales. Cuando una célula vegetal se divide, se forma una pared primaria de celulosa. A veces, cuando las células maduran, se forma una pared secundaria de polisacáridos como la lignina.

7. Las células eucariontes poseen membranas internas que presentan la misma estructura general que la membrana celular y definen los compartimientos y las organelas.

En el interior de la célula, el núcleo

8. El núcleo celular es un compartimiento esférico que contiene el DNA nuclear y asegura la síntesis de las moléculas complejas que requiere la célula. Está limitado por dos membranas concéntricas que presentan poros por donde circulan sustancias desde el citoplasma y hacia él.

9. En las células eucariontes, las moléculas de DNA nuclear son lineales y están fuertemente unidas a proteínas histónicas y no histónicas. Cada molécula de DNA con sus proteínas constituye un cromosoma. Cuando la célula no se está dividiendo, los cromosomas forman una maraña de hilos delgados llamada cromatina. Cuando la célula se divide, los cromosomas se condensan.

10. El cuerpo más conspicuo dentro del núcleo es el nucléolo, lugar donde se construyen las subunidades de los ribosomas.

Entre el núcleo y la membrana celular, el citoplasma

11. En el citoplasma se pueden distinguir el citosol, las organelas y el citoesqueleto. El citosol es una solución acuosa rica en proteínas, iones y otras moléculas. Las vesículas y las vacuolas, el retículo endoplasmático, el complejo de Golgi y los lisosomas son organelas que constituyen el sistema de endomembranas. Los ribosomas, los peroxisomas, las mitocondrias y los plástidos son otros tipos de organelas.

12. Las vesículas almacenan y transportan materiales, dentro de la célula, hacia ella y desde el exterior. La mayoría de las células de plantas y hongos contienen un tipo particular de vesículas, llamadas vacuolas, que mantienen la turgencia celular.

13. El retículo endoplasmático es una red de sacos aplanados, tubos y canales interconectados. Se denomina rugoso cuando tiene ribosomas adheridos a su superficie externa, y liso cuando no los tiene. Cumple un papel importante en el tráfico de proteínas. En asociación con las membranas del retículo liso se producen la síntesis de lípidos y la degradación del glucógeno.

14. El complejo de Golgi es un conjunto de cisternas que actúan como centro de compactación, modificación y distribución de proteínas y lípidos. En las células de las plantas, sintetiza y reúne algunos de los componentes de las paredes celulares.

15. Los lisosomas son un tipo especial de vesículas presentes en las células animales. Contienen enzimas hidrolíticas activas en medio ácido, que degradan las principales macromoléculas que se encuentran en la célula. En los glóbulos blancos, intervienen en la digestión de bacterias.

16. Los peroxisomas contienen distintas enzimas oxidativas que participan en la degradación de los ácidos grasos y el peróxido de hidrógeno que se forma durante el proceso. También degradan sustancias tóxicas como el etanol. En las plantas hay dos tipos de peroxisomas: los que están en las hojas y los que están en las semillas en germinación; estos últimos transforman los ácidos grasos en los azúcares necesarios para el crecimiento de la planta.

17. Los ribosomas son las únicas organelas que no están rodeadas por membranas. En ellos se acoplan los aminoácidos durante la síntesis de proteínas. Los que están libres intervienen en la síntesis de proteínas que permanecerán en el citosol; los que están adheridos a la superficie externa del retículo endoplasmático lo hacen en la síntesis de proteínas que serán enviadas a la superficie de la célula, al exterior o a otros compartimientos del sistema de endomembranas.

18. Las mitocondrias presentan dos membranas. La interna está plegada hacia adentro y forma crestas donde ocurre la respiración celular, proceso que consiste en la degradación de moléculas orgánicas. La energía liberada durante la degradación es almacenada en el ATP. Como las bacterias, las mitocondrias se reproducen por fisión binaria, tienen un pequeño cromosoma y poseen ribosomas similares a los que tienen los procariontes.

19. Los plástidos se encuentran sólo en las plantas y las algas. Hay tres tipos de plástidos maduros: leucoplastos, cromoplastos y cloroplastos. Los leucoplastos almacenan almidón, proteínas o aceites. Los cromoplastos contienen los pigmentos que dan color a las flores y los frutos. Los cloroplastos son el lugar en donde ocurre la fotosíntesis. Como las mitocondrias, los cloroplastos contienen en la estroma muchas copias de un pequeño cromosoma.

20. El citoesqueleto es un denso entramado de haces de fibras proteicas que se extiende a través del citoplasma. Está formado por tres tipos de filamentos: microtúbulos, filamentos intermedios y filamentos de actina. Los microtúbulos son tubos huecos, formados por dímeros de tubulina alfa y beta. Son componentes de los cilios y los flagelos, participan en el transporte de organelas y en el movimiento de los cromosomas durante la división celular. Los filamentos intermedios están compuestos por proteínas fibrosas resistentes y duraderas, formadas por tetrámeros. Abundan en las células sometidas a tensiones mecánicas (epiteliales, nerviosas y musculares) y forman la lámina nuclear, un armazón que sostiene la membrana del núcleo. Los filamentos de actina están constituidos por actina, una proteína globular. Producen movimientos celulares mediante la formación de seudópodos, estrangulan el citoplasma durante la división celular y forman parte de las estructuras contráctiles de las células musculares.

El citoesqueleto y el movimiento

21. Todas las células poseen movimientos celulares como las corrientes citoplasmáticas, los movimientos de las organelas y los cromosomas y los cambios de forma durante la división.

22. Existen dos mecanismos de movimiento celular: el montaje de proteínas contráctiles como la actina y la miosina y las estructuras motoras permanentes formadas por la asociación de microtúbulos (cilios y flagelos). La actina participa en el mantenimiento de la organización citoplasmática, la movilidad celular y el movimiento interno de los contenidos celulares. En algunos casos, el movimiento es producido por la interacción entre actina y miosina, por ejemplo, los movimientos musculares de los vertebrados. Los cilios y los flagelos son estructuras largas, delgadas y huecas, que se extienden desde la superficie de las células eucariontes. Los cilios son cortos y aparecen en grandes cantidades, los flagelos son largos y escasos. Sólo están ausentes en unos pocos grupos de eucariontes (algas rojas, hongos, plantas con flor y gusanos redondos).

23. Casi todos los cilios y los flagelos tienen la misma estructura interna: nueve pares de microtúbulos fusionados forman un anillo que rodea a otros dos microtúbulos situados en el centro. En la parte inferior de cada cilio hay una estructura en forma de cilindro, el cuerpo basal, formado por microtúbulos dispuestos en nueve tripletes en la periferia del cilindro y sin microtúbulos en el centro.

24. Muchos tipos de células eucariontes contienen en su citoplasma centríolos, cuya estructura es idéntica a la de los cuerpos basales. Se encuentran sólo en organismos que presentan cilios y flagelos. Habitualmente se hallan en pares, con sus ejes longitudinales formando ángulos rectos entre sí, en la región del citoplasma próxima a la envoltura nuclear. Esa región, llamada centrosoma, participa en la formación del huso mitótico. El huso es una estructura formada por microtúbulos, que aparece en la división celular y está relacionada con el movimiento de los cromosomas.

http://www.curtisbiologia.com

martes, 31 de agosto de 2010

CUESTIONARIO No. 1

1. Haz una clasificación cuantitativa de los bioelementos.
2. Haz una relación de las propiedades de la molécula de agua.
3. Observa la siguiente tabla de contenido en agua en diferentes órganos del ser humano, y trata de razonar el sentido biológico de dicha distribución:
cerebro 86 %
sangre 79 %
músculos 75 %
hígado 70 %
cartílagos 55 %
huesos 22 %
dientes 10 %

4. Relaciona mediante flechas los siguientes elementos minerales con el papel que realizan:
Hierro Se deposita en los huesos
Flúor Componente de la molécula de hemoglobina
Fósforo Se localiza en dientes y huesos
Calcio Necesario para el tiroides
Yodo Componente del ADN

5. Relaciona mediante flechas los siguientes lípidos con el grupo al que pertenecen:
fosfoglicérido colesterol
terpeno ácido oléico
esteroide cerebrósido
esfingolípido tripalmitina
triglicérido lecitina
ácido graso vitamina A

6. Qué nucleótidos forman el ADN y cuáles el ARN ?.

domingo, 29 de agosto de 2010

COMPOSICION DE LOS SERES VIVOS

La materia viva está formada por una serie de elementos químicos (átomos) que están en distintas proporciones. Los elementos que ocupan cerca del 98% de todo el organismo son el carbono (C), el hidrógeno (H), el oxígeno (O), el nitrógeno (N), el fósforo (P) y el azufre (S). Alrededor del 2% está representado por el calcio (Ca), sodio (Na), Cloro (Cl), potasio (K) y magnesio (Mg). En una proporción menor al 0,1% están el hierro (Fe), yodo (I), zinc (Zn) y cobre (Cu), entre otros. La unión de dos o más de los elementos químicos señalados da lugar a la formación de moléculas llamadas “compuestos químicos”. Estos compuestos químicos que forman la materia viva se clasifican en inorgánicos y en orgánicos. Los componentes inorgánicos son sustancias simples de estructura sencilla, formadas por moléculas pequeñas (bajo peso molecular), presentes en la materia viva y no viva. Por lo general no llevan carbono en sus moléculas, con algunas excepciones como en el caso del dióxido de carbono. Son ejemplos el agua, el dióxido de carbono y las sales minerales, entre otros.
Los componentes orgánicos tienen una estructura más compleja, llevan carbono en su composición y son macromoléculas de alto peso molecular. Están presentes en la materia viva y forman cadenas constituidas por enlaces de carbono muy estables. Son ejemplos de compuestos orgánicos los hidratos de carbono (azúcares), los lípidos (grasas), las proteínas y los ácidos nucleicos (ADN y ARN).
Todos los organismos están constituidos por una combinación ordenada de compuestos inorgánicos y orgánicos. De esa forma, las micromoléculas y las macromoléculas ejercen todos los procesos esenciales para la vida. El número de compuestos orgánicos es mucho mayor que el de los inorgánicos.

COMPUESTOS INORGÁNICOS:AGUA
Es la sustancia más abundante de los seres vivos. Representa alrededor del 70-80% del peso corporal. Está formada por dos átomos de hidrógeno y un átomo de oxígeno. La fórmula química es H2O. El agua posee un gran poder disolvente, por lo que la gran mayoría de las reacciones químicas que suceden en el organismo se producen en medios acuosos. El agua posee muchas funciones.
- Permite que se realicen todas las reacciones químicas esenciales para la vida.
- Regula la temperatura del organismo (sudoración).
- Al tener una importante proporción en el plasma sanguíneo, el agua actúa como transporte de oxígeno y nutrientes hacia las células y en la eliminación de dióxido de carbono y de desechos celulares hacia el exterior del organismo.
- El agua cumple una importante función estructural, dando forma y volumen a las células.
Balance hídrico diario en humanos

SALES MINERALES
Son compuestos químicos formados por la unión de un hidróxido con un ácido. El sodio, el calcio y el hierro son algunos de los elementos que el organismo incorpora en forma de sales minerales, por ejemplo el cloruro de sodio (NaCl) y el cloruro de calcio (CaCl2). El calcio es un componente fundamental de los huesos y dientes. El hierro es parte de la molécula de hemoglobina de los glóbulos rojos, encargada de transportar el oxígeno en la sangre.
En los seres vivos, las sales minerales están en forma sólida (huesos), disueltas (disociadas en aniones y cationes) y asociadas a componentes orgánicos. Sus funciones son:
- Formar estructuras duras y resistentes.
- Regular el equilibrio osmótico de las células.

COMPUESTOS ORGÁNICOS
Los compuestos orgánicos presentes en los organismos se clasifican en cuatro grupos: hidratos de carbono, lípidos, proteínas y ácidos nucleicos.

HIDRATOS DE CARBONO
También llamados carbohidratos, azúcares o glúcidos, estas sustancias contienen tres clases de átomos: carbono, hidrógeno y oxígeno (CHO). La función más importante de los hidratos de carbono es el aporte de energía. Según la cantidad de moléculas que posean, los hidratos de carbono se clasifican en monosacáridos, disacáridos y polisacáridos.
Monosacáridos
Formados por una sola molécula que tiene 5 ó 6 carbonos. Los monosacáridos son los hidratos de carbono más sencillos, cuya fórmula simplificada es C6H12O6. Son hidrosolubles (se disuelven en agua) y de sabor dulce. Ejemplos: glucosa, galactosa, fructosa, ribosa y desoxirribosa.
Disacáridos
La combinación de dos moléculas de monosacáridos con separación de una molécula de agua da origen a los disacáridos, cuya fórmula química abreviada es C12H22O11.

Los disacáridos también son hidrosolubles y de sabor dulce. Son ejemplos la sacarosa o azúcar común, formada por la unión de una molécula de glucosa con una de fructosa, la lactosa o azúcar de la leche, producto de la unión de una molécula de glucosa con otra de galactosa, y la maltosa o azúcar de malta, que se forma con dos moléculas de glucosa.
Polisacáridos: Se forman a partir de la unión de varias moléculas de monosacáridos. Son insolubles en agua y no tienen sabor. Como ejemplos de polisacáridos están el almidón, la celulosa y el glucógeno, entre otros. El almidón se forma por la unión de una gran cantidad de moléculas de glucosa. Se acumula en los organismos vegetales y son una importante reserva de energía en esos organismos. Las semillas contienen abundancia en almidón. La celulosa está presente en la pared de las células vegetales, siendo su función darle sostén a las plantas. El algodón y el papel están formados de celulosa más o menos pura. El glucógeno es un polisacárido de los animales y, como el almidón y la celulosa, se forma a partir de la unión de un gran número de moléculas de glucosa.
Los polisacáridos y disacáridos tienen la propiedad de transformarse en monosacáridos cuando se les hierve en agua acidulada, porque los ácidos diluidos los hidratan, es decir, les hacen recuperar el agua que perdieron al formarse.

LÍPIDOS
Igual que los hidratos de carbono, los lípidos son moléculas orgánicas formadas por carbono, hidrógeno y oxígeno (CHO), aunque distribuidas de diferente forma. Son insolubles en agua, solubles en alcohol y cloroformo y untuosos al tacto. Se dividen en grasas (sólidas a temperatura ambiente) y en aceites (líquidos a temperatura ambiente). Tanto las grasas como los aceites son triglicéridos, formados por tres moléculas de ácidos grasos y una molécula de glicerol. Algunos ácidos grasos poseen una o más uniones dobles entre los átomos de carbono de la cadena (C=C) denominándose insaturados. Esto hace que las moléculas no puedan compactarse, con lo cual tienden a ser líquidas a temperatura ambiente. Son ejemplos el ácido oleico (un enlace doble) y el ácido linoleico (dos enlaces dobles). Por el contrario, los ácidos grasos saturados (ácido palmítico y ácido esteárico) no tienen doble enlace, por lo que sus cadenas están saturadas con átomos de hidrógeno. Las grasas de los animales se caracterizan por tener ácidos grasos saturados que permanecen empaquetados apretadamente y sólidas a temperatura ambiente.

Los lípidos cumplen varias funciones dentro del organismo, a saber:
Estructural: forman parte de las membranas celulares.
Reserva de energía: las semillas de los vegetales poseen lípidos. Cuando germinan, las nuevas plantas pueden crecer lo suficiente hasta autoabastecerse.
Protectora: los lípidos son excelentes aislantes térmicos, ya que la capa subcutánea de los animales ayuda a mantener la temperatura del cuerpo. Además, las grasas protegen contra los golpes.
Repelentes del agua: los animales secretan aceites sobre la superficie de la piel, las plumas y los pelos. Por otra parte, una capa de cera cubre las hojas de los vegetales evitando que el agua se evapore. Las ceras son similares a las grasas y aceites, salvo que los ácidos grasos se unen a largas cadenas de alcoholes en lugar de unirse al glicerol. Las abejas elaboran ceras especiales para la construcción de las colmenas.
Transporte: las sales biliares ayudan a transportar las grasas desde el intestino a la sangre.

PROTEÍNAS
Son grandes moléculas orgánicas compuestas por cuatro átomos: carbono, hidrógeno, oxígeno y nitrógeno (CHON), aunque algunas poseen también azufre y fósforo (CHONSP). Las proteínas son insolubles en agua y de estructura compleja, ya que cada una de ellas tiene una forma directamente relacionada con su función biológica. Las proteínas están conformadas por aminoácidos. Tan solo veinte aminoácidos diferentes se combinan para formar todas las variedades de proteínas existentes. Los aminoácidos pueden ser esenciales y no esenciales. Los esenciales, presentes en la carne y en algunos vegetales, tienen que ingresar con la dieta porque el organismo no los produce. Los aminoácidos no esenciales, en cambio, son elaborados por el organismo y también están en los alimentos.

Las funciones que tienen las proteínas en el organismo son:
Estructural: la queratina está presente en los pelos, lana, plumas, piel, uñas y cuernos.
Hormonal: la insulina es una proteína que controla la glucosa presente en la sangre.
Inmunológica: las globulinas dan lugar a la formación de anticuerpos llamados inmunoglobulinas.
Transporte: la hemoglobina es una proteína que transporta oxígeno y dióxido de carbono en la sangre.
Enzimática: las enzimas son proteínas cuya función es acelerar una reacción química.

ÁCIDOS NUCLEICOS
El ácido ribonucleico (ARN) y el ácido desoxirribonucleico (ADN) son ácidos nucleicos. El ADN es una enorme molécula (macromolécula) que se transmite de una generación a otra. Los genes, fragmentos de ADN, tienen instrucciones que determinan las características de un organismo, ya que posee toda la información genética y la transmite a la descendencia.
El ARN es una macromolécula parecida al ADN que actúa como intermediaria al traducir las instrucciones presentes en los genes para la síntesis de proteínas. Los ácidos nucleicos son polímeros, cuyos monómeros son los llamados nucleótidos.
En las células eucariotas de animales y plantas superiores, el ARN se encuentra mayormente en el citoplasma y algo en el núcleo. La macromolécula de ARN forma una cadena simple. En cambio, el ADN está únicamente dentro del núcleo de la célula y posee dos cadenas, paralelas y enrolladas en espiral.
En síntesis, el ADN es una larga macromolécula que se forma a partir de unidades llamadas nucleótidos. Cada nucleótido, a su vez, se forma a partir de fosfato, de un azúcar y de una base nitrogenada. Es decir, todo el ADN está formado por átomos de carbono, hidrógeno, oxígeno, nitrógeno y fósforo (CHONP). Al unirse, los nucleótidos forman moléculas de ADN. El ARN también está formado por los cinco átomos mencionados.

COMPOSICION QUIMICA DE LOS SERES VIVOS

Todas las moléculas orgánicas como los carbohidratos, los lípidos, las proteínas y los nucleótidos contienen carbono, hidrógeno y oxígeno. Además, las proteínas contienen nitrógeno y azufre, y los nucleótidos, así como algunos lípidos, contienen nitrógeno y fósforo. El agua, una molécula inorgánica, contiene hidrógeno y oxígeno.
En la Tierra existen unos 92 elementos. Los elementos son sustancias que no pueden ser desintegradas en otras sustancias por medios químicos ordinarios. Un elemento está constituido por átomos. Desde hace largo tiempo, los científicos tratan de entender cómo es un átomo. Se han propuesto diversos modelos que intentan representar la estructura del átomo. Los átomos de cada elemento diferente tienen en sus núcleos un número característico de partículas cargadas positivamente, llamadas protones. Por ejemplo, un átomo de hidrógeno, el más liviano de los elementos, tiene un protón en su núcleo; el número de protones en el núcleo de un átomo cualquiera recibe el nombre de número atómico. Por lo tanto, el número atómico del hidrógeno es 1 y el del carbono, que cuenta con seis protones, es 6. Fuera del núcleo de un átomo hay partículas cargadas negativamente, los electrones, que son atraídos por la carga positiva de los protones. El número de electrones en un átomo iguala al número de protones en su núcleo. Los electrones determinan las propiedades químicas de los átomos y las reacciones químicas implican cambios en el número y el estado energético de estos electrones. Los átomos también contienen neutrones, que son partículas sin carga de aproximadamente el mismo peso que los protones. También se encuentran en el núcleo del átomo, donde parecen tener un efecto estabilizador. El peso atómico de un elemento es aproximadamente igual a la suma del número de protones y el número de neutrones del núcleo de sus átomos. El peso atómico del carbono es, por convención, igual a 12, mientras que el del hidrógeno, que no contiene neutrones, es ligeramente mayor que 1. Los electrones son tan livianos, en comparación con los protones y los neutrones, que su peso habitualmente no se considera. Cuando nos pesamos, sólo unos 30 gramos del peso total está integrado por electrones.
Las moléculas pueden ser orgánicas –aquellas que contienen carbono– o inorgánicas, como el H2O o el O2.Una sola célula bacteriana contiene aproximadamente cinco mil clases diferentes de moléculas y una célula vegetal o animal tiene alrededor del doble. Estas miles de moléculas, sin embargo, están compuestas de relativamente pocos elementos (CHNOPS). De modo similar, relativamente pocos tipos de moléculas desempeñan los principales papeles en los sistemas vivos. En los organismos se encuentran cuatro tipos diferentes de moléculas orgánicas en gran cantidad. Estos cuatro tipos son los carbohidratos (compuestos de azúcares), lípidos (moléculas no polares, muchas de las cuales contienen ácidos grasos), proteínas (compuestas de aminoácidos) y nucleótidos (moléculas complejas que desempeñan papeles centrales en los intercambios energéticos y que también pueden combinarse para formar moléculas muy grandes, conocidas como ácidos nucleicos). Se ha dicho que sólo se necesita ser capaz de reconocer unas 30 moléculas para tener un conocimiento que permita trabajar con la bioquímica de las células. Dos de esas moléculas son los azúcares glucosa y ribosa; otra, un lípido; otras veinte, los aminoácidos biológicamente importantes; y cinco las bases nitrogenadas, moléculas que contienen nitrógeno y son constituyentes claves de los nucleótidos.
Las macromoléculas son moléculas constituidas por varias moléculas que pueden ser similares entre sí o no. Los polisacáridos, por ejemplo, están constituidos por monosacáridos unidos en cadenas largas. Algunos de ellos son formas de almacenamiento del azúcar, mientras que otros, como la celulosa, son un material estructural importante de las plantas. Los lípidos son moléculas orgánicas hidrófobas que, al igual que los carbohidratos, desempeñan papeles importantes en el almacenamiento de energía y como componentes estructurales. Los compuestos de este grupo incluyen las grasas y los aceites, los fosfolípidos, los glucolípidos, las ceras y el colesterol y otros esteroides. Las grasas son los principales lípidos almacenadores de energía. Los fosfolípidos son los principales componentes estructurales de las membranas celulares. Las proteínas son moléculas muy grandes compuestas de cadenas largas de aminoácidos, conocidas como cadenas polipeptídicas. En las proteínas, los aminoácidos se organizan en polipéptidos y las cadenas polipeptídicas se ordenan en un nuevo nivel de organización: la estructura terciaria o cuaternaria de la molécula de proteína completa. Solamente en este nivel de organización emergen las propiedades complejas de las proteínas y sólo entonces la molécula puede asumir su función. Los nucleótidos son moléculas complejas formadas por un grupo fosfato, un azúcar de cinco carbonos y una base nitrogenada. Son los bloques estructurales de los ácidos desoxirribonucleico (DNA) y ribonucleico (RNA), que transmiten y traducen la información genética.

domingo, 22 de agosto de 2010

EL MÉTODO CIENTÍFICO

Se entiende por método científico al proceso destinado a explicar fenómenos, establecer relaciones entre los hechos y enunciar leyes que puedan explicar los fenómenos físicos que suceden en el mundo. De esa manera, y gracias al método científico, es posible obtener aplicaciones útiles al hombre. En general, son prácticas utilizadas y ratificadas por la comunidad científica como válidas a la hora de proceder, con el fin de exponer y confirmar sus teorías. Es requerimiento fundamental del método científico, que todas las hipótesis y teorías deben ser probadas mediante la observación del mundo natural, restándose importancia tanto al raciocinio como a la intuición. Según algunos investigadores, el método científico es el modo de llegar a elaborar teorías, entendiendo éstas como configuración de leyes. Todo experimento debe ser reproducible, es decir, debe estar planteado y descrito de forma que pueda repetirlo cualquier experimentador que disponga del material adecuado. Según el filósofo Francis Bacon, el método científico consta de los siguientes pasos.

1- OBSERVACIÓN
La observación consiste en el estudio de un fenómeno que se produce en sus condiciones naturales. En el método científico, la observación debe ser cuidadosa, exhaustiva y exacta.
Consiste en la medida y registro de los hechos observables a través de instrumentos científicos. Además, estas observaciones deben ser realizadas profesionalmente, sin la influencia de opiniones o emociones. Tener en cuenta que observar es aplicar atentamente los sentidos a un objeto o a un fenómeno, para estudiarlos tal como se presentan en realidad. A partir de la observación surge el planteamiento del problema que se va a estudiar, lo que lleva a emitir alguna hipótesis o suposición provisional de la que se intenta extraer una consecuencia.
La observación es una de las manifestaciones, junto con la experimentación, del método científico o verificación empírica. Ambas son complementarias, aunque hay ciencias basadas solo en la observación, tal el caso de la astronomía, pues el objeto de sus estudios no puede ser llevado a cabo en un laboratorio. Ciencia es una palabra que deriva del latín scientia, que significa conocer.

2- HIPÓTESIS
Una hipótesis puede definirse como una solución provisional (tentativa) para un problema dado. El nivel de verdad que se le asigne a tal hipótesis dependerá de la medida en que los datos empíricos recogidos apoyen lo afirmado en la hipótesis. Esto es lo que se conoce como proceso de validación de la hipótesis.

3- EXPERIMENTACIÓN
Es el método común de las ciencias y las tecnologías basado en probar la hipótesis. Consiste en el estudio de un fenómeno, reproducido generalmente en un laboratorio, en las condiciones particulares de estudio que interesan, eliminando o introduciendo aquellas variables que puedan influir en él. Los resultados de un experimento pueden describirse mediante tablas, gráficos y ecuaciones de manera que puedan ser analizados con facilidad y permitan así encontrar relaciones entre ellos que confirmen o no las hipótesis emitidas. De todos los pasos en el método científico, el que verdaderamente separa la ciencia de otras disciplinas es el proceso de experimentación. Para comprobar o refutar una hipótesis, el científico diseñará un experimento para probar esa hipótesis.

4- CONCLUSIONES
Son proposiciones a las que se llega a través de argumentos válidos que parten de una hipótesis. Las conclusiones dan lugar a la formulación de tesis o teorías científicas. La tesis es una proposición que se da por verdadera. La teoría científica constituye una explicación o descripción de un conjunto de observaciones o experimentos. Está basada en hipótesis o supuestos verificados por grupos de investigadores, y en general abarca varias leyes comprobadas. Los científicos emplean el método científico como una forma planificada de trabajar. Sus logros son acumulativos y han llevado a la humanidad al momento cultural actual.

http://hnncbiol.blogspot.com/2008/01/el-metodo-cientifico-2-parte.html

INTRODUCCIÓN A LA BIOLOGÍA

La Biología es una disciplina que pertenece a las Ciencias Naturales. Su principal objetivo es el estudio del origen, de la evolución y de las propiedades que poseen todos los seres vivientes. La palabra biología deriva del griego y significa “estudio de la vida” (bios, vida y logos, estudio o tratado).

Ciencia es el conjunto de conocimientos obtenidos a través de la observación y el razonamiento, sistemáticamente estructurados y de los que se deducen principios y leyes generales. La Biología es una ciencia que incluye diversas disciplinas que en ocasiones se tratan de manera independiente. La biología molecular y la bioquímica estudian la vida a partir de las moléculas, mientras que la biología celular o citología lo hacen a partir de las células. La anatomía, la histología y la fisiología realizan el estudio desde un aspecto pluricelular. Es por ello que la Biología debe considerarse como un conjunto de ciencias, puesto que los seres vivos pueden ser estudiados a partir de diferentes enfoques. Ese conjunto de ciencias forma parte de las Ciencias Biológicas, donde se incluyen la morfología, la fisiología, la microbiología, la genética, la patología, la taxonomía y muchas disciplinas más que se detallan a continuación.

MORFOLOGÍA
Es el estudio de las formas, de la constitución de los seres vivientes. La morfología se subdivide en Anatomía, Histología y Embriología.
-Anatomía: trata sobre la estructura macroscópica de los organismos, su ubicación y la relación entre los distintos órganos que forman parte del ser vivo, sea animal o vegetal. Por lo tanto, debe considerarse una Anatomía Animal, que estudia las características que tienen los órganos como músculos, huesos, estómago, corazón, órganos reproductores, etc., y una Anatomía Vegetal, que describe la estructura de las distintas partes de las plantas.
-Histología: es el estudio de los tejidos. Se considera como una anatomía microscópica, ya que el conjunto de células que cumple funciones similares puede visualizarse a través de microscopios. Debe considerarse la Histología Animal y la Histología Vegetal, según sea el organismo en estudio.
-Embriología: en una rama de las Ciencias Biológicas que trata sobre el desarrollo de los seres vivos desde la fecundación hasta alcanzar la etapa adulta. Tras la fecundación se forma el huevo o cigoto, en cuyo interior se va formando el embrión del nuevo ser (etapa embrionaria). Una vez que se formaron los principales órganos y estructuras se llega a la etapa fetal, donde el feto continúa su desarrollo hasta el nacimiento. La Embriología se relaciona con la Anatomía y la Histología.

FISIOLOGÍA
Rama de las Ciencias Biológicas que estudia el funcionamiento de los distintos órganos y tejidos, ya sean de origen animal (Fisiología Animal) o de origen vegetal (Fisiología Vegetal).

MICROBIOLOGÍA
Es el estudio de los microorganismos. Se divide en varias subdisciplinas donde sobresalen la Bacteriología, que estudia las bacterias, la Micología o estudio de los hongos, la Virología, que trata sobre los virus y la Ficología, rama que se encarga del estudio de las algas, donde muchas especies son unicelulares, entre ellas las cianobacterias o algas verde azuladas.

PATOLOGÍA
Corresponde al tratado sobre las distintas enfermedades de plantas y animales.

BIOQUÍMICA
Es una Ciencia Biológica que estudia los componentes químicos de los organismos, como los hidratos de carbono, las grasas, las proteínas, los ácidos nucleicos y demás moléculas intracelulares. La Bioquímica trata todos aquellos fenómenos químicos esenciales para la vida.

GENÉTICA
Es una división de las Ciencias Biológicas que estudia la forma en que los factores hereditarios se transmiten de una generación a otra, como así también el modo en que se controlan dichos procesos.

ECOLOGÍA
Es el estudio de los ecosistemas, de la relación existente entre los seres vivos y el ambiente en el que se encuentran.

BOTÁNICA
Rama de las Ciencias Biológicas que estudia los vegetales.

ZOOLOGÍA
Es el tratado sobre los animales.

PALEONTOLOGÍA
Es el estudio de los seres extinguidos.

TAXONOMÍA
Se encarga de la clasificación de todos los seres vivos que existen en el planeta.

Cabe señalar que las disciplinas antes nombradas son algunas de todas las ciencias biológicas existentes. La Citología es la rama que estudia las células, la Etología el comportamiento, la Parasitología trata sobre los parásitos de plantas y animales y la Entomología estudia los insectos. No puede dejar de mencionarse a la nutrición y la reproducción de los organismos animales y vegetales, procesos de suma importancia para los seres vivos cuyo estudio también está dentro de las Ciencias Biológicas. Por último la Biofísica, que se encarga de estudiar la Biología con métodos y principios propios de la Física, tiene por función encontrar leyes y conceptos que den explicación sobre el comportamiento de los sistemas biológicos, como las células y los organismos más complejos. A la fecha existen dudas en considerar a la Biofísica como parte de la Física o de la Biología.
Al principio de este trabajo se dijo que la Biología era una rama de las Ciencias Naturales. Las Ciencias Naturales están formadas por un grupo de ciencias que se ocupan del estudio de la Naturaleza, entre ellas la Biología, la Astronomía, la Física, la Química y las Ciencias de la Tierra.

domingo, 15 de agosto de 2010

CÉLULAS EUCARIOTAS

La célula (del latín: cellula, diminutivo de “cella” = hueco) es la unidad anatómica y funcional de los seres vivientes, con capacidad para crecer, vincularse con el medio externo, reproducirse y transmitir información a su descendencia. La célula es una unidad anatómica ya que los organismos están constituidos por células, ya sea por una sola o por millones de ellas. Es una unidad funcional porque las células cumplen objetivos vitales específicos que son imprescindibles para poder sobrevivir. Las células son estructuras complejas que crecen, respiran, se alimentan, se relacionan, se reproducen y eliminan sus desechos por sí solas.

POSTULADOS DE LA TEORIA CELULAR
En 1665, Robert Hooke propuso el nombre de “célula” a los compartimientos observados con el microscopio en un trozo de corcho. Pocos años después, Anton van Leeuwenhoek pudo descubrir las características de los glóbulos rojos, de los espermatozoides y de diversos microorganismos presentes en aguas estancadas.
Theodor Schwann, en 1839, postuló el primer principio de la teoría celular, al señalar que todos los seres vivos están formados por células. Diez años más tarde, Rudolf Virchow propuso el segundo principio, al sostener que todas las células provienen de otras células. El concepto moderno de teoría celular se puede resumir en los siguientes postulados:

1-Todo ser vivo está formado por una o más células.
2- La célula es lo más pequeño que tiene vida propia, ya que todas las reacciones químicas de los organismos suceden en su interior.
3- Toda célula procede de otra célula preexistente.
4- El material hereditario se transfiere de la célula madre a las hijas.

Cada célula es un sistema abierto que intercambia materia y energía con el medio que la rodea. En una célula es posible que se realicen todas las funciones vitales, de modo que basta una sola célula para que exista un ser vivo. En consecuencia, es posible afirmar que la célula es la unidad fisiológica, la mínima expresión de vida.
El tamaño de las células es muy pequeño, imposible de ver a simple vista. Para poder medirlas se utiliza la micra (micrón), que equivale a la milésima parte de un milímetro y se simboliza con la letra griega μ (mu). Si tenemos en cuenta que el diámetro de un glóbulo rojo tiene una longitud aproximada de 7 μ, en un milímetro podrían ordenarse, uno al lado del otro, alrededor de 143 glóbulos.
Hay células de tamaños muy variados, con menos de un micrón como algunas bacterias y con longitudes de varios centímetros como las neuronas, células nerviosas con largas y delgadas prolongaciones llamadas axones. En general, se admite que el promedio de las células animales se ubica entre 10 y 20 µ, mientras que las vegetales son de alrededor de 20 a 35 µ. La forma que adoptan las células tiene que ver con la función que realizan. Las hay redondeadas, oblongas, cilíndricas, poliédricas, estrelladas, etc.
A diferencia de las procariotas, las células eucariotas poseen una membrana nuclear que encierra a un núcleo, en cuyo interior se localiza el material genético. Además, dentro del citoplasma tienen numerosos organoides (organelas) que cumplen funciones específicas. Las eucariotas son células evolucionadas y de estructura más compleja que las procariotas. Los protozoos (microorganismos formados por una sola célula), los metazoos (animales multicelulares) y los vegetales están constituidos por células eucariotas. Por lo tanto, las eucariotas dan origen a organismos uni y pluricelulares, y están presentes en la mayoría de los animales y vegetales. Igual que casi todas las células procariotas bacterianas, las células eucariotas de los vegetales poseen una gruesa pared externa compuesta de polisacáridos, específicamente de celulosa en el caso de los vegetales superiores. Esta pared, que es externa a la membrana plasmática, está en contacto íntimo con otras células. Brinda protección y es responsable de la forma que adoptan las células. Las eucariotas de animales no poseen pared celular, siendo la membrana plasmática la que limita el espacio extracelular con el intracelular.

En general, las eucariotas tienen un tamaño diez veces más grandes que las procariotas. Las células eucariotas se estudian dentro de dos grandes grupos: eucariotas animales y eucariotas vegetales. Ambos tipos de células poseen una membrana celular y una membrana nuclear. Dentro del citoplasma hay organelas diferenciadas para cumplir funciones específicas, como mitocondrias, retículos endoplasmáticos liso y granular, aparato de Golgi, lisosomas, ribosomas, centríolos, vacuolas, microtúbulos y microfilamentos. Para estudiar las diferencias entre las células animales y vegetales, como así también las características de los distintos organoides, consultar células eucariotas.

ESTRUCTURA DE LAS EUCARIOTAS
MEMBRANA PLASMATICA
Es el límite externo de la célula, que le da protección y actúa como una barrera selectiva entre el líquido del espacio extracelular y el citoplasma. La composición de la membrana plasmática incluye alrededor de un 40 % de lípidos y 50 % proteínas, junto a pequeñas cantidades de hidratos de carbono, cerca del 10 %, unidas a las dos anteriores. Los lípidos están representados por una doble capa de fosfolípidos y por otros lípidos como el colesterol, este último solo en eucariotas animales. La formación de la bicapa se debe a que los fosfolípidos son anfipáticos, es decir, cada molécula posee una región hidrofílica, soluble en agua, y una región hidrofóbica que repele el agua. Las cabezas hidrofílicas se orientan hacia el citoplasma y hacia el medio extracelular, mientras que las colas hidrófobas lo hacen hacia el interior de la membrana. Del total de lípidos que conforman la membrana plasmática, cerca del 75 % son fosfolípidos, mientras que el 20 % corresponden a moléculas de colesterol. Estos últimos brindan mayor fortaleza a la membrana y la hacen menos deformable. Además, el colesterol disminuye la permeabilidad de la bicapa a pequeñas moléculas hidrosolubles. El 5 % restante de los lípidos de membrana son los glucolípidos, elementos unidos a los lípidos con características anfipáticas que se orientan hacia el área extracelular. Los glucolípidos contribuyen a mantener la adhesión de células y tejidos.

Dentro del 50 % de las proteínas que conforman la membrana plasmática hay diferentes tipos. Las denominadas proteínas integrales se unen fuertemente a los lípidos y atraviesan la doble capa. La mayor parte de las proteínas integrales son glucoproteínas, donde el monosacárido se orienta al medio extracelular. Las proteínas periféricas se asocian débilmente a los lípidos y se ubican a uno u otro lado de la membrana, sin atravesarla, en contacto con las cabezas hidrófilas de los fosfolípidos.

Las proteínas de la membrana plasmática tienen funciones de comunicación, de unión a receptores moleculares, de transporte, de acción enzimática, de anclaje de filamentos del citoesqueleto y de identidad celular, entre otros. Es así que las proteínas de la membrana plasmática:
- Establecen canales a manera de poros por donde entran y salen sustancias de la célula, siendo las proteínas integrales las encargadas de esa misión.
- Reconocen y se unen a receptores de ciertas moléculas que sean importantes para la célula, como nutrientes, hormonas, neurotransmisores, etc. Esta función también la realizan las proteínas integrales.
- Transportan sustancias a través de la membrana plasmática.
- Poseen acción enzimática en la superficie de la membrana, catalizando reacciones bioquímicas. De esta función se encargan las proteínas integrales y periféricas
- Fijan los filamentos del citoesqueleto celular, a cargo de ambos tipos de proteínas.
- Regulan la identidad celular por medio de las glucoproteínas y glucolípidos, haciendo posible identificar a las células que provienen de otros organismos, como sucede en las transfusiones de sangre. Los glóbulos rojos, al presentar marcadores del tipo A, B, AB y O permiten identificar sangres compatibles. Es decir, la determinación del tipo de sangre en humanos se relaciona con la clase de glucolípidos existente en la superficie de los eritrocitos. Las porciones hidrocarbonadas de las glucoproteínas y los glucolípidos forman el glucocálix, que actúa como una capa protectora.
Las membranas de los distintos organoides del citoplasma son las encargadas de mantener las diferentes concentraciones de sustancias que hay en el interior de las estructuras y en el citosol. El grosor aproximado de la membrana plasmática es de 70 - 80 Å (angstrom). Un ángstrom es igual a la diez millonésima parte de un milímetro (1 Å = 0,0000001 mm).
La membrana plasmática se une a las membranas plasmáticas de las células vecinas mediante estructuras engrosadas llamadas desmosomas. De función mecánica, los desmosomas mantienen a las células bien ligadas entre sí, por medio de filamentos proteicos anclados al citoesqueleto. Estos parches son abundantes en el tejido epitelial y en el músculo cardíaco, áreas sujetas a una importante tensión mecánica.

CITOPLASMA
Es la parte de la célula que se ubica entre la membrana plasmática y la membrana nuclear. Está constituido por 85 % de agua y un 15 % de proteínas, aminoácidos, sales y minerales. En el citoplasma se realizan la mayoría de las reacciones metabólicas de la célula.
La porción del citoplasma sin estructura y que forma la parte fluida se denomina hialoplasma o citosol, lugar donde están las moléculas necesarias para el mantenimiento de la célula. Vale decir que el hialoplasma es el medio interno líquido de todas las estructuras celulares.
El citoesqueleto es una serie de filamentos proteicos responsable de la forma celular y de facilitar el movimiento de los organoides. Actúa como una conexión entre las distintas partes de la célula. El citoesqueleto se destruye y se vuelve a reconstruir, por lo que no es una estructura permanente de la célula. Se forma a partir de tres componentes proteicos: microtúbulos, microfilamentos y filamentos intermedios.
- Microtúbulos: son los componentes más importantes del citoesqueleto, compuestos por una proteína denominada “tubulina”. De consistencia rígida, son los responsables de la formación de estructuras como los centríolos y órganos de locomoción, como los cilios y los flagelos. Los microtúbulos irradian desde el centrosoma.
- Microfilamentos: se disponen cerca de la membrana plasmática y están asociados al movimiento de la célula. Están formados por dos tipos de proteínas, la “actina” y la “miosina”. Los microfilamentos están muy desarrollados en células musculares estriadas (músculos voluntarios). La superposición de microfilamentos de actina y miosina permiten la contracción muscular.
- Filamentos intermedios: están formados por varios tipos de proteínas. Se extienden por todo el citoplasma y abundan en aquellas células que soportan mucha tensión, por lo que son resistentes y evitan la destrucción celular.

Dentro del citoplasma, existen organelas con distintas funciones, que están presentes tanto en eucariotas animales como vegetales y que se detallan a continuación.

MITOCONDRIAS
Las mitocondrias son organelas que presentan doble membrana, una externa en contacto con el citoplasma y otra interna, hacia la matriz mitocondrial. Dicha matriz está compuesta por agua y proteínas. Las mitocondrias, de forma oval y alargada, son consideradas como las “usinas eléctricas” de las células. Son las encargadas de producir y almacenar energía en forma de ATP a partir de la glucosa, lípidos y demás nutrientes. Mediante la respiración celular, proceso que consume oxígeno y libera dióxido de carbono, se produce energía que se acumula en el ATP. Toda vez que en algún lugar de la célula se necesita aporte energético, por ejemplo para transportar sustancias a través de la membrana plasmática, la división celular, reciclado de desechos, etc., el ATP se descompone y se libera.

Las mitocondrias poseen ADN en su interior, un ARN propio y ribosomas. Las mitocondrias ocupan un lugar importante dentro del citoplasma. Algunas células del organismo con una actividad energética importante, como las hepáticas y las musculares, poseen gran cantidad de mitocondrias por cada célula.

RETICULO ENDOPLASMÁTICO
Esta estructura es un sistema de membranas que se dispone formando una red de sacos aplanados, donde contiene túbulos que se conectan entre sí formando una lámina continua que da lugar a un lumen. Las membranas del retículo endoplásmico separan dicho lumen del citoplasma, y actúan en la transferencia selectiva de moléculas entre ambos compartimientos. Todas las membranas del retículo endoplasmático equivalen a la mitad de las membranas totales que hay en cada célula. Además, es el lugar donde se producen todas las proteínas y los lípidos que forman las membranas del propio retículo, del complejo de Golgi, de los lisosomas y de la membrana plasmática.
El retículo endoplásmico adopta dos variedades: una forma granular o rugosa y otra agranular o lisa. El retículo endoplasmático granular está unido a la membrana nuclear externa, mientras que el retículo endoplasmático agranular es una prolongación del retículo endoplasmático rugoso.
Son funciones del retículo la síntesis de proteínas, de lípidos, el transporte intracelular de sustancias y la detoxificación de la célula. Las sustancias sintetizadas son almacenadas y luego transportadas a su destino celular. La detoxificación de sustancias como fármacos, drogas y desechos celulares es de gran importancia en las células del hígado.

a) Retículo endoplasmático granular (REG)
Presenta numerosas protuberancias, debido a una gran cantidad de ribosomas unidos a la membrana. Tiene por función la detoxificación celular y la síntesis de proteínas que serán utilizadas por las membranas, por otras organelas o para ser enviadas fuera de la célula. Estas membranas forman un espacio interno (luz del retículo) que lo separan del citoplasma, condicionando la transferencia selectiva de moléculas entre ambos compartimientos.
El REG tiene gran desarrollo en células del hígado y del páncreas, debido a una intensa labor detoxificante y de síntesis. También en los glóbulos blancos, ya que producen y secretan anticuerpos (proteínas) para ser exportadas a todo el organismo.

b) Retículo endoplasmático agranular (REA)
Su apariencia “lisa” se debe a la carencia de ribosomas. Dentro del REA están las enzimas necesarias para la síntesis de lípidos (triglicéridos, fosfolípidos y esteroides) y enzimas necesarias para la detoxificación de alcoholes y otras sustancias. El REA es importante de células del testículo y del ovario para la síntesis de hormonas esteroides, como también en los hepatocitos para detoxificar sustancias nocivas.

COMPLEJO DE GOLGI
Es un organoide con 5 a 10 sacos aplanados membranosos de forma discoide denominados dictiosomas. Estos dictiosomas se conectan entre sí y contienen fluidos en su interior. Poseen una cara cóncava y otra convexa. La parte cóncava (cara cis o de formación), próxima al retículo endoplásmico, recibe de este último las proteínas sintetizadas en el área rugosa (granular). Esas proteínas son transportadas en vesículas de transición hasta la mencionada cara cis del complejo de Golgi. La parte convexa del dictiosoma (cara trans o de maduración) es la más cercana a la membrana plasmática y formadora de vesículas de secreción. En síntesis, las vesículas de transición que llegan del retículo endoplásmico penetran en la cara cis del complejo de Golgi, atraviesan todos los sáculos o dictiosomas y llegan al trans-Golgi. Aquí son empaquetadas para luego dirigirse a la membrana plasmática para vaciar su contenido fuera de la célula por exocitosis.
El complejo de Golgi secreta sustancias tales como enzimas digestivas, hormonas y sustancias que se transforman en glucoproteínas para la formación de la pared celular. Algunas enzimas permanecen dentro de vesículas membranosas, los lisosomas, capaces de degradar moléculas complejas. El complejo de Golgi se encuentra en todas las células eucariotas, a excepción de las epidérmicas y de los glóbulos rojos.

En resumen, las funciones del complejo de Golgi son:
-Síntesis de polisacáridos para la pared celular.
-Formación de glucoproteínas y glucolípidos de secreción. (glicosilación de prótidos y lípidos).
-Formación de lisosomas que permanecen en el citoplasma.
-Empaquetamiento, dentro de vesículas, de sustancias de secreción como proteínas. - Transporte intracelular de sustancias.

RIBOSOMAS
Son organelas muy pequeñas de alrededor de 20 nanómetros de diámetro, visibles al microscopio electrónico. Un nanómetro es la millonésima parte del milímetro (1 nm = 0,000001 mm).
Los ribosomas están formados por ácido ribonucleico ribosómico (ARNr) y proteínas. Existen varios millones de estas estructuras en cada célula. Los ribosomas se componen de dos subunidades: una mayor, que se encarga de formar las uniones de aminoácidos que darán lugar a las proteínas, y otra menor que reconoce a los ARN mensajeros (ARNm) y a los ARN de transferencia (ARNt) . En eucariotas, las dos subunidades mencionadas se sintetizan en el nucléolo. Las moléculas de ARN mensajero llevan la información que llega desde el ADN de cómo se distribuirán los aminoácidos para la elaboración de una determinada proteína. El ARN de transferencia transporta los aminoácidos apropiados hacia los ribosomas para que se incorporen a las proteínas.

Hay ribosomas que permanecen libres en el citoplasma, fuera del retículo endoplásmico, cuya misión es sintetizar proteínas que permanecen dentro de las células. Los ribosomas de células procariotas y eucariotas tienen la misma forma y función. Se sintetizan dentro del núcleo celular, más precisamente en el nucléolo.

NUCLEO
Esta la organela, que ocupa la parte central de la célula, actúa como centro de control de casi toda la actividad hereditaria. Está delimitado por dos membranas concéntricas, la carioteca o envoltura nuclear, donde se distinguen una membrana externa que contacta con el citoplasma y otra interna. Sobre esta última, hay una delgada capa de filamentos proteicos, la lámina nuclear, que actúa fijando a los cromosomas cuando la célula se divide.
La carioteca, que se conecta de manera directa con el retículo endoplásmico, posee numerosos orificios o poros por donde salen hacia el citoplasma moléculas de ARN mensajero que serán leídas por los ribosomas, proteínas y ARN ribosómico, precursor de los ribosomas. Las sustancias que ingresan por los poros del citoplasma al núcleo son proteínas sintetizadas por los ribosomas citoplasmáticos. Los poros nucleares regulan en forma selectiva el pasaje de sustancias. Una de las funciones de la carioteca es proteger al ADN intranuclear de las distintas reacciones que se producen en el citoplasma.
El jugo nuclear es una sustancia que llena todo el núcleo, formada por una solución coloidal que contiene agua, carbohidratos, enzimas y ATP, entre otros.
Dentro del núcleo y en íntimo contacto con el jugo nuclear se encuentra la cromatina, que son filamentos muy largos y numerosos de ADN que se enrollan a moléculas de proteínas especiales llamadas “histonas”. Toda vez que una célula inicia su división, los filamentos de ADN se pliegan entre sí dando lugar a la formación de cromosomas.
Otra formación presente dentro del núcleo es el nucléolo, pequeña estructura de forma redondeada y sin membranas. Cuando las células comienzan a reproducirse (mitosis) el nucléolo desaparece, haciéndose nuevamente visible al final de la mitosis. El nucléolo contiene ADN ribosómico, fundamental para el proceso de fabricación de ARN (transcripción), que ha de sintetizar los ribosomas del citoplasma. Se ha comprobado que el nucléolo actúa como un regulador del ciclo celular.

Dentro de las importantes funciones que tiene el núcleo sobresale la de ejercer el control de todas las actividades de la célula. Además, interviene en la replicación y transcripción de los ácidos nucleicos y en la transferencia de la información genética a las células hijas durante la división celular.

I- ESTRUCTURAS DE EUCARIOTAS ANIMALES
Las células eucariotas animales tienen estructuras exclusivas, como el centrosoma, los lisosomas y los cilios y flagelos. Además, se diferencian de las eucariotas vegetales por ser heterótrofas, por carecer de pared celular y de plástidos, estos últimos fundamentales para que los vegetales verdes puedan fotosintetizar.

LISOSOMAS
Los lisosomas se originan en los dictiosomas (sacos aplanados) del aparato de Golgi, y en ocasiones a partir de vesículas en algunas regiones del retículo endoplasmático granular. Son organelas pequeñas, esféricas y semejantes a vacuolas.
Limitadas por una sola membrana, contienen en su interior poderosas enzimas encargadas de digerir sustancias que ingresan a las células (lisosomas digestivos), con lo cual se comportan como un sistema digestivo celular. Por otra parte, los lisosomas pueden degradar desechos celulares, lípidos y proteínas (lisosomas autofágicos) que son liberados a través de la membrana plasmática.

CENTROSOMA
Ocupa un área del citoplasma situada casi siempre muy cerca del núcleo. Regula los movimientos celulares de cilios y flagelos y tiene un rol fundamental en la división celular. El centrosoma está formado por el diplosoma, la centrosfera y el áster. En su interior está el diplosoma, que son dos cilindros huecos cuyas paredes están formadas por unidades de proteína (figura de la izquierda). Esos cilindros son los centríolos, que carecen de membranas y se ubican de manera perpendicular entre sí. Cada célula posee dos centríolos, cuya función es intervenir en la división celular y posibilitar la transferencia de material genético entre las células hijas. Por cada centríolo hay nueve grupos de tres microtúbulos cada uno, dispuestos en forma cilíndrica.

Los centríolos se hacen visibles toda vez que la célula se divide para reproducirse. La centrosfera es una sustancia traslúcida donde se ubica el diplosoma. El áster es el conjunto de filamentos radiales que parten de la centrosfera, fundamentales en el proceso de la mitosis.

CILIOS Y FLAGELOS
Son proyecciones del citoesqueleto limitadas por una membrana que es continuación de la membrana plasmática. Son estructuras similares y permanentes. Los flagelos se caracterizan por ser largos y escasos. Los cilios por ser cortos y numerosos. Dentro del citoplasma, ambos están formados por un anillo representado por nueve pares de microtúbulos que rodean a un par ubicado en el centro, todo cubierto por la membrana plasmática. Muchas eucariotas, igual que las procariotas bacterianas, utilizan estas estructuras para la locomoción. Son ejemplos el flagelo (cola) de los espermatozoides y los cilios del paramecio.

Los cilios (del latín “pestaña”) son prolongaciones muy finas de la membrana plasmática a modo de “dedo de guante”, con un contenido que es continuación del citoplasma. De diámetro uniforme en toda su longitud, rodean total o parcialmente el contorno de las células. Los cilios producen vibraciones sincronizadas que permiten el movimiento de la célula. El Paramecio es un ejemplo de microorganismo ciliado, con cerca de 200 cilios en cada individuo. Los cilios de las células del tracto respiratorio tienen la misión de capturar las partículas del aire.

Los flagelos son apéndices en forma de látigo presente en muchos organismos unicelulares, como el Trypanosoma sp. (foto de la izquierda) y en algunos pluricelulares, como los espermatozoides. El flagelo es utilizado para la movilidad celular en medios líquidos, igual que los cilios. También poseen un diámetro uniforme en toda su longitud, aunque algo mayor. Son más largos y menos numerosos que los cilios, ya que algunas células tienen tan solo uno o dos flagelos. El flagelo de las eucariotas se desplaza como si fuera un látigo, mientras que en las procariotas el movimiento es rotatorio a manera de sacacorcho.

II- ESTRUCTURAS DE EUCARIOTAS VEGETALES
A pesar que las eucariotas vegetales tienen casi los mismos elementos que las eucariotas animales, hay estructuras que son propias como la pared celular y los plástidos.

PARED CELULAR
Es una típica estructura de eucariotas vegetales y fúngicas. Se ubica en la parte externa de la membrana plasmática, en contacto con células adyacentes. Es de consistencia gruesa y rígida, formada principalmente por celulosa. Cumple una función similar al esqueleto de los animales superiores, ya que le da firmeza a la planta posibilitando que se mantenga erguida. Además, interviene en diversos procesos como la absorción, secreción, transpiración y defensa contra agentes patógenos. La pared está perforada por pequeños poros denominados plasmodesmas. Estos plasmodesmas atraviesan la membrana plasmática y establecen una comunicación directa entre el citoplasma de las células adyacentes.
En la pared celular se diferencian tres estructuras, desde el exterior hacia la parte interna de la célula. Ellas son: una lámina media, una pared primaria y una pared secundaria, esta última en contacto con la membrana plasmática y subdividida en tres capas. La celulosa de las paredes celulares protege a las células adyacentes de la desecación. Gran parte de la corteza y de la madera de los árboles está formada de pared celular.

PLASTIDOS
Tal como las mitocondrias, los plástidos son organelas con doble membrana, responsables de los diferentes colores que tienen las plantas. Dentro de los plástidos, también llamados “plastos”, se distinguen los cloroplastos, los cromoplastos y los leucoplastos. Los cloroplastos contienen clorofila, que se encarga de captar la energía lumínica y transformarla en energía química. De esa forma, el vegetal realiza la fotosíntesis, reacción que tiene lugar en los tilacoides, sacos o vesículas aplanadas que están inmersos en una solución llamada estroma en el interior de los cloroplastos. En la membrana de los tilacoides se ubica la clorofila, carotenos y xantinas. Pilas de tilacoides forman el grana de los cloroplastos. Los cloroplastos producen grande cantidades de ATP (adenosintrifosfato). Contienen ADN, un ARN propio y ribosomas.
Los cromoplastos fabrican y almacenan otros pigmentos que le dan color a los frutos, flores y hojas secas. Son ejemplos de esos pigmentos el caroteno (anaranjado) y la xantofila (amarillo). Los leucoplastos son plástidos de color blanquecino encargados de almacenar almidones (amiloplastos), lípidos y proteínas.

VACUOLAS
Son elementos en forma de saco que se originan a partir de provacuolas, pequeñas estructuras presentes en células jóvenes. A medida que la célula crece, estas diminutas estructuras absorben agua por ósmosis y se unen entre sí hasta formar una vacuola de gran tamaño que ocupa un considerable espacio del citoplasma. Las vacuolas tienen una membrana de permeabilidad selectiva que acumula agua, dando lugar al crecimiento de la célula y al mantenimiento de su turgencia. En su interior contiene sales, glúcidos, proteínas y demás nutrientes.
Las vacuolas también actúan en la remoción de elementos innecesarios. Mediante el proceso de exocitosis (movimiento de sustancias hacia fuera de la célula) las vacuolas se acercan y se adhieren a la membrana plasmática para eliminar desechos al exterior. Además, por endocitosis (movimiento de sustancias hacia dentro de la célula) pueden transportar al citoplasma moléculas que no difunden por la membrana celular. En este caso, esas moléculas se adhieren a la membrana plasmática y se produce una invaginación, formándose una vacuola.