domingo, 11 de diciembre de 2011

La diversidad de los procariontes

El dominio Bacteria se ha dividido en doce grandes linajes, agrupados de acuerdo con la afinidad entre las secuencias de sus RNA ribosómicos. Los más antiguos incluyen organismos hipertermófilos y anaerobios; los más modernos están integrados por las bacterias grampositivas, las cianobacterias y las proteobacterias.
El dominio Archaea se ha dividido en dos grandes grupos: Crenarqueota y Euriarqueota. El primero está formado por hipertermófilos; el segundo, por bacterias metanogénicas halófilas. Se ha propuesto un tercer grupo, Korarqueota, cuyos integrantes se conocen sólo a partir de secuencias de RNA 16S obtenidas de muestras ambientales. No se consideran un grupo monofilético.
Relaciones filogenéticas hipotéticas entre los grupos de Bacteria
Relaciones filogenéticas hipotéticas entre los grupos de Bacteria

(a) Relaciones filogenéticas generales entre Bacteria y los demás seres vivos. (b) Relaciones filogenéticas hipotéticas entre algunos grupos de Bacteria. Éste es uno de los posibles árboles que surgen como resultado de análisis moleculares.




Relaciones filogenéticas hipotéticas entre los grupos de Archaea
Relaciones filogenéticas hipotéticas entre los grupos de Archaea
(a) Relaciones filogenéticas generales entre Archaea y los demás seres vivos. (b) Relaciones filogenéticas hipotéticas entre los principales grupos de Archaea


El hábitat de los procariontes

Los representantes del dominio Bacteria han colonizado hábitats muy diversos: aguas dulces y salobres, zonas calientes y frías, terrenos fangosos, fisuras de rocas, sedimentos marinos y el aire. Algunos se alojan como comensales, parásitos o simbiontes en distintos órganos de animales muy diversos, o persisten asociados con raíces y tallos de plantas, con hongos (líquenes) y protozoos.
Los integrantes de Archaea pueden habitar ambientes con condiciones extremas o moderadas. Algunos toleran temperaturas superiores a 100 °C (hipertermófilos) o inferiores a 0 °C (psicrófilos), concentraciones salinas muy superiores a las del agua del mar (halobacterias) y pH extremos. Pueden ser aerobios o anaerobios, estrictos o facultativos. Algunos son metanogénicos y habitan sedimentos marinos, de agua dulce y de pantanos.

Características de Bacteria y Archaea

La longitud de las células procariontes varía de unas décimas a varias centenas de micrómetros; su volumen es menor al micrómetro cúbico. La alta relación superficie-volumen favorece el intercambio de nutrientes y productos de excreción entre el citoplasma y el medio que rodea a la célula. La respiración y la fotosíntesis tienen lugar sobre la membrana plasmática o sobre sus invaginaciones.
Las formas celulares de los integrantes de Bacteria son diversas: esferas pequeñas (cocos), ovoides (cocobacilos), cilindros rectos (bacilos), espiraladas y alargadas (espirilos y espiroquetas), bastones curvos (vibriones) y filamentos. Las formas más frecuentes de los representantes de Archaea son los bacilos y los cocos.
En la célula procarionte se puede diferenciar el citoplasma, la envoltura y los apéndices externos. El citoplasma contiene el material genético (DNA), los ribosomas e inclusiones. La envoltura está formada por la membrana plasmática, la pared celular y la cápsula. Son apéndices externos los flagelos, las fimbrias y los pili.
Los procariontes poseen un cromosoma formado por una única molécula circular de DNA de doble cadena, que se encuentra libre en el citoplasma. Puede haber además una o más moléculas pequeñas de DNA, también circular (plásmidos).
Una célula procarionte puede tener 10.000 ribosomas agrupados en polirribosomas a lo largo de moléculas de mRNA. La diferencia más importante entre los ribosomas de Bacteria y Archaea, que sustenta su separación en dos dominios diferentes, se encuentra en la secuencia de bases nitrogenadas de sus fracciones de RNA 16S.
Las inclusiones son gránulos formados por glucógeno, lípidos, polifosfatos, azufre o pigmentos fotosintéticos.
La membrana plasmática de los miembros de Bacteria es similar a la de los eucariontes, pero no posee colesterol ni otros esteroides. En los integrantes de Archaea, la membrana puede ser una bicapa si los lípidos se unen a un solo glicerol, o una monocapa más rígida si se unen a un glicerol por cada extremo. En ningún caso poseen colesterol.

Fig. Esquema de membrana de Bacteria
Esquema de membrana de Bacteria

Los ácidos grasos se unen al glicerol por unión de tipo éster.

Fig. Esquema de membrana de Archaea
Esquema de membrana de Archaea
Los isoprenoides se unen al glicerol por unión de tipo éter.




La pared celular de los miembros de Bacteria está constituida por peptidoglucanos o mureína. Debido a su respuesta a la coloración de Gram, la estructura y el grosor de la pared define dos grupos: grampositivo y gramnegativo. Los micoplasmas son patógenos intracelulares obligados y carecen de pared. Los miembros de Archaea presentan paredes celulares que pueden tener seudopeptidoglucano, proteínas o glucoproteínas. Estas variaciones son adaptaciones relacionadas con la resistencia a condiciones ambientales extremas. También pueden presentar, por fuera de la pared, una capa de proteínas y glucoproteínas.

Coloración de Gram
Las paredes celulares de las bacterias se presentan en dos configuraciones diferentes, fácilmente distinguibles por su capacidad para combinarse firmemente con ciertos colorantes. Esta técnica lleva el nombre del microbiólogo danés Hans Christian Gram (1853-1938) quien, al tratar un preparado microscópico sucesivamente con un colorante violeta, un fijador, alcohol y un colorante de contraste rosado o rojo, descubrió que algunas bacterias aparecían de color violeta y otras de color rosado. Las células que retienen el primer colorante y se tiñen de violeta se llaman grampositivas (G+); las de aspecto rosado, que se tiñen con el segundo colorante -pues el violeta es lavado por el alcohol- se conocen como gramnegativas (G-). Los resultados obtenidos mediante la técnica de coloración de Gram dependen básicamente del espesor de la pared, el tamaño de los poros y las propiedades de permeabilidad de la envoltura celular. La estructura de la pared celular se relaciona también con la susceptibilidad a antibióticos, lo que resulta muy útil en el momento de tratar una infección. (a) La pared de las G+ está formada por una capa homogénea y espesa de peptidoglucano y polisacáridos. (b) En las G-, la pared tiene una capa delgada de peptidoglucano y una capa exterior, la membrana externa, similar a la membrana celular, con lipoproteínas y lipopolisacáridos. El espacio comprendido entre la membrana celular y la membrana externa contiene abundantes enzimas y se llama periplasma.

Muchos procariontes secretan una capa mucilaginosa de polisacáridos (glucocáliz). Sus funciones parecen estar relacionadas con la adherencia y la conservación de agua, evitar la desecación y constituir un obstáculo a la fagocitosis y al ataque por parte de células del sistema inmunitario de los hospedadores.
Los flagelos otorgan movilidad a las bacterias. Las fimbrias permiten la adherencia a otras células o a superficies inertes. Los pili intervienen en el mecanismo de conjugación y en el intercambio de material genético.
Las endosporas son estructuras de resistencia producidas por algunos integrantes de Bacteria cuando las condiciones ambientales son desfavorables. Presentan una extraordinaria resistencia al calor, a la desecación, a las radiaciones, a los ácidos y a otros agentes químicos. Pueden permanecer muchos años con un metabolismo casi nulo, pero continúan siendo viables y se reactivan en condiciones favorables. No se conocen Archaea que formen estructuras similares.
Las bacterias flageladas se mueven por una sucesión de "carreras" y "paradas", en una dirección u otra, según el sentido de rotación del flagelo. Las espiroquetas poseen un filamento axial que les permite desplazarse en medios líquidos y viscosos (humus y lodo). Algunas cianobacterias, bacterias púrpuras y verdes y algunas Archaea se desplazan por flotación mediante vesículas de gas.
Las bacterias realizan movimientos de cinesis y taxis. La cinesis es una combinación de movimiento al azar y conservación de la dirección mientras aumenta la intensidad de un estímulo. La taxis, en cambio, es el movimiento orientado hacia la fuente del estímulo. Ciertos espirilos contienen cuerpos diminutos de magnetita que les permiten orientarse al interactuar con el campo magnético de la Tierra.
Los procariontes se reproducen por fisión binaria. Durante este proceso ocurren mutaciones que, debido a la condición haploide de estos organismos, se expresan rápidamente y pueden ser seleccionadas o no por las fuerzas selectivas presentes. Esta característica, sumada a sus cortos tiempos generacionales, son los responsables de su gran adaptabilidad y diversidad. La conjugación, la transformación y la transducción son fuentes adicionales de variabilidad genética en los procariontes.

 http://curtisbiologia.com/node/301

No hay comentarios:

Publicar un comentario